| 研究生: |
楊逸琦 Yi-chi Yang |
|---|---|
| 論文名稱: |
表面粗糙度對接觸角遲滯影響之效應 Effect of surface roughness on contact angle hysteresis |
| 指導教授: |
曹恆光
Heng-kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 表面粗糙度 、接觸角遲滯 、溫佐理論 、卡西理論 、液體滲入 |
| 外文關鍵詞: | surface roughness, contact angle hysteresis, Wenzel model, Cassie model, Liquid imbibition |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今對於基材表面粗糙度如何影響液滴接觸角遲滯的相關研究尚未清楚,本論文透過靜電紡絲與機械力研磨等方式在基材表面上提供粗糙度並且各基材上液滴接觸角遲滯是透過水滴的前進角與後退角量測所獲得的,然而粗糙基材上的潤濕性質可以透過全氟矽烷的蒸氣沉積法或者溶膠-凝膠法加以改善。隨著表面粗糙度增加時,液滴前進角會隨之上升但是對於後退角的潤濕行為可分為三種類型:(1)、隨粗糙度增加後退角隨之下降,(2)、隨粗糙度增加後退角隨之上升,(3)、隨粗糙度增加後退角存在最小值。針對此三種潤濕行為變化之合理說法可由粗糙結構中氣囊(air pocket)穩定程度獲得解釋。
影響粗糙結構中氣囊穩定程度變化可以透過觀察鑽孔基材中液體滲入與氣泡浮出過程加以說明,在錐形單孔基材中,隨著液體潤濕性質提升與孔洞深度變淺,都使得液體滲入速率變快而氣泡越容易排至大氣中。其潤濕過程是液膜接觸線沿著孔壁變化而向下流,並在底端累積並將氣泡隨之舉起並排出。而在多孔基材上,液滴會隨著滲入程度快慢而導致接觸角量測上的變化,當液體本身滲入速率較慢時,此前進角量測時符合Cassie-Baxter理論而上升,但是液體終究會滲入於孔洞中,導致在後退角量測上因Wenzel理論而角度下降。
The influence of surface roughness on contact angle hysteresis is not well understood. In this study, surface roughness is systematically altered on some polymeric substrates such as polystyrene, polycarbonate and poly(methyl methacrylate) by polishing or electrospinning method and its effect on contact angle hysteresis is investigated via measuring advancing and receding contact angles of water. The wettability on these substrates is also modifed by vapor-phase deposition of perfluorooctyltrichlorosilane or sol-gel reaction. As surface roughness is increased, the advancing contact angle grows but three types of the receding contact angle (θr) behavior have been identifed:(i) monotonic reduction of θr, (ii) monotonic enhancement of θr, and (iii) presence of a minimum of θr. The plausible mechanism based on the stability of air pockets is proposed to explain our experimental findings.
The effect of stability of air ockets on rough surface can be observed by liquid imbibition into holes on a substrate. The imbibition behavior of a drop on top of a small hole is dependent on various rate of imbibition and the depth of hole. As the liquid drop favors wetting on the substrate surface or the depth of hole becomes more shallow, spontaneous and rapid imbibition into the conical hole takes place and trapped air is removed upon immediate impregnation. The possible imbibition pathway is that the three-phase contact line move downward along the wall of the hole. Once the contact line reaches the bottom, liquid starts to accumulate. The air bubble rises up slowly and eventually burst as it is in contact with the drop surface exposed to the ambient atmosphere. Liquid cannot immediately impregnate into the holes due to the relatively slow rate of imbibition. Therefore, the advancing contact angles of liquid drop on the porous substrate correspond to the Cassie-Baxter state. However, the liquid eventually invades the holes after some time and the receding contact angles are in the Wenzel state.
[1] N. Nuraje, W. S. Khan, Y. Lei, M. Ceylan R. Asmatulu,
Superhydrophobic electrospun nanofibers, J. Mater.
Chem. A 1, 1929–1946 (2013)
[2] Y. Zheng, X. Gao, L. Jiang, Directional adhesion of
superhydrophobic butterfly wings, Soft Matter 3, 178
–182 (2007)
[3] P. Somasundaran, Encyclopedia of Surface and Colloid
Science, vol 8, p.6611-6612, CRC Press. , United
States , (2006)
[4] A. Grigoryev, I. Tokarev, K. Kornev, I. Luzinov, S.
Minko, Super-omniphobic magnetic microtextures with
remote wetting control, J. Am. Chem. Soc 134,
12916−12919 (2012)
[5] S. Ebnesajjad, A. H. Landrock, Adhesives Technology
Handbook, 3rd Edition, Ch.2, p.19-34, William Andrew,
NewYork, (2014)
[6] M. Ma, R. M. Hill, Superhydrophobic surfaces, Curr Opin
Colloid Interface Sci 11, 193–202 (2006)
[7] M. Kang, R. Jung, H.-S. Kim, H.-J. Jin, Preparation of
superhydrophobic polystyrene membranes by
electrospinning, Colloids Surf A Physicochem
Eng Asp 313–314, 411–414 (2008)
[8] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, The
change of bead morphology formed on electrospun
polystyrene fibers, Polymer 44 4029–4034 (2003)
[9] T. Lin, H. Wang, H.Wang, X. Wang, The charge effect of
cationic surfactants on the elimination of fibre beads
in the electrospinning of polystyrene, Nanotechnology
15 1375–1381 (2004)
[10] H.W Fox, W.A Zisman, The spreading of liquids on low
energy surfaces. I. polytetrafluoroethylene, J.
Colloid Sci 5, p.514-531 (1950)
[11] L. Zhai, F. Cü . Cebeci, R. E. Cohen, M. F. Rubner,
Stable Superhydrophobic Coatings from Polyelectrolyte
Multilayers, Nano Lett., Vol. 4, No.7 (2004)
[12] A. Tuteja, Robust omniphobic surfaces, PNAS vol. 105
no. 47 18200–18205 (2008)
[13] A. Ulman, Formation and Structure of Self-Assembled
Monolayers, Chem. Rev. 96, 1533-1554 (1996)
[14] M. Wang, K. M. Liechti, Q. Wang, J. M. White, Self-
Assembled Silane Monolayers: Fabrication with
Nanoscale Uniformity, Langmuir 21,1848-1857, (2005)
[15] M. Adamkiewicz, T. O'Hara, D. O'Hagan, G. Hähner, A
vapor phase deposition of self-assembled monolayers:
Vinyl-terminated films of volatile silanes on silicon
oxide substrates, Thin Solid Films 520 6719–6723,(2012)
[16] S. Rezaei, I. Manoucheri, R. Moradian, B. Pourabbas,
One-step chemical vapor deposition and modification of
silica nanoparticles at the lowest possible
temperature and superhydrophobic surface fabrication,
Chem Eng J 252 ,11–16 , (2014)
[17] R. D. Lowe, M. A. Pellow, T. Daniel, P. Stack, C. E.
D. Chidsey, deposition of Dense Siloxane Monolayers
from Water and Trimethoxyorganosilane Vapor, Langmuir
27, 9928–9935, (2011)
[18] L.Feng, L.Jiang, Petal Effect: A Superhydrophobic
State with High Adhe-sive Force, Langmuir 24, 4114-
4119, (2008)
[19] A. W. Adamson, Physical Chemistry of Surfaces, Ch.10,
5th edn, Wiley,New York, (1990)
[20] R.E. Johnson, R.H. Dettre, Contact angle, wettability
and adhesion, Adv.Chem. Ser. 43, 112–135, (1964)
[21] A. Hennig, K. Grundke, R. Frenzel, M. Stamm,
Ultrahydrophobic surfaces: Relation between roughness
and contact angle hysteresis, Surf Det 39, 243-246,
(2002)
[22] K. Grundke, M. Nitschke, S. Minko, M. Stamm, C.Froeck,
F, Simon, S.Uhlmann, K. Pöschel, M. Motornov, In:
Mittal KL, (Ed) Contact angle,wettability and
adhesion, vol. 3.VSP; p. 267.-p.291, (2003)
[23] K. Grundke, K. Pöschel, A. Synytska, R. Frenzel, A.
Drechsler, M. Nitschke , A.L. Cordeiro, P. Uhlmann ,
P.B.Welzel, Experimental studies of contact angle
hysteresis phenomena on polymer surfaces — Toward
the understanding and control of wettability for
different applications, Adv Colloid Interface Sci, In
Press, Corrected Proof (2014)
[24] P. G. Pittoni, C.-H. Lin, T.-S. Yu, S.-Y. Lin, On the
Uniqueness of the Receding Contact Angle: Effects of
Substrate Roughness and Humidity on Evaporation of
Water Drops, Langmuir 30, 9346−9354, (2014)
[25] A Lafuma, D Quéré, Superhydrophobic states, Nature
materials 2, 457-460(2003)
[26] E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman,
R. Pogreb,Environmental Scanning Electron Microscopy
Study of the Fine Structure of the Triple Line and
Cassie-Wenzel Wetting Transition for Sessile Drops
Deposited on Rough Polymer Substrates, Langmuir 23,
4378-4382,(2007)
[27] D. Murakami, H. Jinnai, A. Takahara, Wetting
Transition from the Cassie−Baxter State to the Wenzel
State on Textured Polymer Surfaces,Langmuir 30,
2061−2067, (2014)
[28] A. K. Metya, S. Khan, J. K. Singh, Wetting Transition
of the Ethanol−Water Droplet on Smooth and Textured
Surfaces, J. Phys. Chem. C 118,4113−4121, (2014)
[29] T. Young, An Essay on the Cohesion of Fluids. Philos.
Trans. R. Soc. London, 95, 65-87, (1805)
[30] N. K. ADAM, Use of the Term 'Young's Equation' for
Contact Angles,Nature 180, 809 – 810, (1957)
[31] R. N. Wenzel, Resistance of solid surfaces to wetting
by water, Ind. Eng.Chem. 28, p. 988–994, (1936)
[32] A. Cassie and S. Baxter, Wettability of porous
surfaces, Trans. Faraday Soc.40, p.546–551, (1944)
[33] Y. Uyama, K. ITO Inoue, A. Kishida, Yoshito. Ikada,
Comparison of Different Methods for Contact Angle
Measurement. J. Colloid Interface Sci. 141, 275-279
(1991)
[34] O. N. Tretinnikov, Y. Ikada, DynamicWetting and
Contact Angle Hysteresis of Polymer Surface Studied
with the Modified Wilhelmy Balance Method, Langmuir
10, 1606-1614 (1994)
[35] V. Berejnov, R.-E. Thorne, Effect of Transient Pinning
on Stability of Drops Sitting on An Inclined Plane,
Phys. Rev. E 75, 066308 (2007)
[36] De Gennes, A model for contact angle hysteresis, J.
Chem. Phys. 81, 552(1984).
[37] Jacob Israelachvili, Friction and Adhesion Hysteresis
of Fluorocarbon Surfactant Monolayer-Coated Surfaces
Measured with the Surface Forces Apparatus, J. Phys.
Chem. B, 1998, 102 (1), pp 234–244.
[38] S.-J. Hong, F.-M. Chang, T.-H. Chou, S.-H. Chan, Y.-J.
Sheng, H.-K. Tsao,Anomalous Contact Angle Hysteresis
of a Captive Bubble: Advancing Contact Line Pinning,
Langmuir 27, 6890–6896, (2011)
[39] F. Garbassi, M. Morra, E. Occhiello, Polymer Surfaces
From Physics to Technology, Ch.4, p.171-178, Wiley,
New York, (1994)
[40] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, Super
Water-Repellent Surfaces Resulting from Fractal
Structure, J. Phys. Chem. 100, 19512-19517,(1996)
[41] D. Que ́re ́, Rough ideas on wetting, Physica A 313, 32
– 46, (2002)
[42] J. Bico, U. Thiele, D. Que ́re ́, Wetting of textured
surfaces, Colloid surface A.206, 41–46, (2002)
[43] G. Fang, A. Amirfazli, Understanding the Edge Effect
in Wetting:A Thermodynamic Approach, Langmuir 28,
9421−9430, (2012)