跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周敏揚
Min-yang Chou
論文名稱: 利用高頻都卜勒探測系統研究2011年日本東北地震引發之移行電離層擾動
Observations of seismo-traveling ionospheric disturbance during the 2011 Tohoku Japan earthquake using HF frequency Doppler sounding system.
指導教授: 劉正彥
Jann-yenq Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 海嘯電離層地震
外文關鍵詞: tsunami, ionosphere, earthquake
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2011年3月11日05:46:23 UT,日本東北近太平洋地區發生一芮氏規模9.0的逆衝型地震。此地震造成地表強烈的錯動並引發毀滅性的海嘯。而地震與海嘯垂直震盪與大氣產生同振,此同振以聲重力波(Acoustic-gravity wave; AGW)的形式傳至電離層與游離氣體作用,引發移行電離層擾動現象(Seismo-traveling ionospheric disturbance,簡稱 STID)。利用臺灣與日本之都卜勒電離層探測網觀測地震與海嘯後之移行電離層擾動現象,都卜勒頻譜顯示出明顯的短週期與長週期都卜勒頻移擾動。研究結果顯示此為雷利波與海嘯引發之移行電離層擾動現象,其垂直傳播速度為666 m/s;水平傳播速度約為2.76 km/s與218 m/s。同時使用Hilbert-Huang Transform (HHT)分析高頻都卜勒電離層探測系統與地震儀測得之擾動訊號,估算由地震引發的特徵週期約為15-45秒與180-270秒;海嘯之特徵週期為20-60分鐘。由於海嘯重力波斜向傳播之特性,使得電離層海嘯訊號到達測站時間較海面上海嘯提早約一個小時左右。最後應用圓圈法、波束聚集法與射線追蹤法鎖定移行電離層擾動源頭,驗證此電離層擾動現象起因於日本東北大地震及後續的海嘯。


      A megathrust earthquake of magnitude 9.0 occurred near the east coast of Honshu (Tohoku area), Japan on 11 March 2011, 05:46:23 UT, producing a strong vertical earth surface motion and inducing devastating tsunamis. The vertical shock created mechanical disturbance (acoustic gravity waves, AGWs) in the neutral atmosphere, which propagated into the ionosphere and interacted with the ionized gas (hereafter, seismo- traveling ionospheric disturbance; STID). A network of HF Doppler Sounding System in Taiwan and Japan are used to study the STID after the Tohoku earthquake. Results show that the clear STIDs consisting of a package of short-period and long-period Doppler shifts are excited by Rayleigh waves and tsunami waves with a vertical speed of 666m/s; horizontal speed of 2.76 km/s and 214 m/s, respectively. Hilbert-Huang Transform (HHT) is applied to analysis the oscillation signals of ionosphere of HF Doppler and seismometer triggered by Rayleigh waves, the characteristic periods of seismic waves are around 15-45 and 180-270 seconds; the characteristic periods of tsunami waves are 20-60 minutes in the ionosphere. Due to the oblique propagate of gravity wave of tsunami, the arrival time of tsunami wave in the ionosphere approximately one hour ahead of the tsunami in the ocean. Finally, searching the epicenter and the origin of tsunami with the circle method, beam-forming and ray-tracing technique confirms that the observed STIDs are induced by the Rayleigh wave and tsunami waves of the Tohoku earthquake.

    摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1電離層 1 1.2地震波與重力波 5 1.3移行電離層擾動 7 1.4研究動機 9 第二章 觀測儀器與方法 18 2.1高頻都卜勒電離層探測系統 18 2.2希爾伯黃轉換 25 2.3波源分析 28 第三章 資料分析與觀測結果 31 3.1地震移行電離層擾動 31 3.2海嘯移行電離層擾動 47 第四章 討論與結論 63 參考文獻 69

    Artru, J., T. Farges, and P. Lognonn’e, Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modeling, Geophys. J. Int., 158, 1067–1077, 2004.
    Afraimovich, E. L., N. P. Perevalova, A. V. Plotnikov, and A. M. Uralov, The shock-acoustic waves generated by the earthquakes, Ann. Geophys., 19, 395–409, 2001.
    Bolt, B. A., Seismic air waves from the great 1964 Alaskan earthquake,
    Nature, 202, 1095–1096, 1964.
    Calais, E., and J. B. Minster, GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045–1048, doi:10.1029/95GL00168, 1995.
    Donn, W. L., and E. S. Posmentier, Ground coupledair waves from the great Alaskan earthquake, J . Geophys. Res., 69(24), 5357-53611, 964.
    Davies, K., Ionospheric Radio, 580 pp, Peter Peregrinus Ltd., London,U.K., 1990.
    Heki, K. and J. Ping, Directivity and apparent velocity of the cosemic ionospheric disturbances observed with a dense GPS array, Earth Planet. Sci. Lett., 236, 845–855, 2005.
    Huang, N. E., Z. Shen, S. R. Long, M. C.Wu, H. H. Shih, Q. Zheng, N.-C.Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903–993.
    Huang, N. E., Z. Shen, R. S. Long (1999),: A new view of nonlinear water waves–the Hilbert spectrum, Ann. Rev. Fluid Mech., 31, 417-457.
    Huang, B. S., K. C. Chen, H. Y. Yen, and Z. X. Yao, 1999: Re-examination of the epicenter of the 16 September 1994 Taiwan Strait earthquake using the beam-form¬ing method. Terr. Atmos. Ocean. Sci., 10, 529-542.
    Kelly, M. C., 2009: The Earth’s Ionosphere, Academic Press, 2nd Edition, Boston, 556 pp.
    Leonard, R. S. and R. A. Barnes, Observations of ionospheric disturbances following the Alaska earthquake, J. Geophys. Res., 70, 1250–1253,1965.
    Lay, T. and T. C. Wallace, 1995: Modern Global Seismol¬ogy, Academic Press, San Diego, 512 pp.
    Lee, W. H. K. and S. W. Stewart, 1981: Principles and Ap¬plications of Microearthquake Networks, Academic Press, New York, 293 pp.
    Liu, J. Y., C. H. Chen, C. H. Lin, H. F. Tsai, C. H. Chen, and M. Kamogawa, Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku Earthquake, J. Geophys. Res., 116, A06319, doi:10.1029/2011JA016761, 2011.
    Liu, J. Y., Y. B. Tsai, S. W. Chen, C. P. Lee, Y. C. Chen, H. Y. Yen, W.
    Y. Chang, and C. Liu, Giant ionospheric disturbances excited by the
    M9.3 Sumatra earthquake of 26 December 2004, Geophys. Res. Lett.,
    33, L02103, doi:10.1029/2005GL023963, 2006.
    Liu, J. Y., H. F. Tsai, C. H. Lin, M. Kamogawa, Y. I. Chen, C. H. Lin, B.
    S. Huang, S. B. Yu, and Y. H. Yeh, Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake, J. Geophys. Res., 115, A08303, doi: 10.1029/2009JA014943, 2010.
    Liu, J. Y.,* and Y. Y. Sun, Seismo-traveling ionospheric disturbances of ionograms observed during the 2011 Mw 9.0 Tohoku Earthquake, Earth Planets Space, 63, 897–902, Sep. 2011.
    Maruyama, T., T. Tsugawa, H. Kato, A. Saito, Y. Otsuka, and M. Nishioka, Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 869–873, 2011.
    Matsumura, M., A. Saito, T. Iyemori, H. Shinagawa, T. Tsugawa, Y. Otsuka, M. Nishioka, and C. H. Chen, Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 885–889, 2011.
    Otsuka, Y., N. Kotake, T. Tsugawa, K. Shiokawa, T. Ogawa, Effendy, S. Saito, M. Kawamura, T. Maruyama, N. Hemmakorn, and T. Komolmis, GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake, Earth Planets Space, 58, 159–165, 2006.
    Rolland, L. M., P. Lognonn’e, E. Astafyeva, E. A. Kherani, N. Kobayashi, M. Mann, and H. Munekane, The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 853–857, 2011.
    Shinagawa, H., T. Iyemori, S. Saito, and T. Maruyama, A numerical simulation of ionospheric and atmospheric variations associated with the Sumatra earthquake on December 26, 2004, Earth Planets Space, 59, 1015–1026, 2007.
    Tsai, H.F., J.Y. Liu, C.H. Lin, and C.H. Chen, Tracking the epicenter and the tsunami origin with GPS ionosphere observation, Earth Planets Space, 63, 859–862, 2011.
    Yuen, P. C., P. F. Weaver, R. K. Suzuki, and A. S. Furumoto (1969), Continuous traveling coupling between seismic waves and the ionosphere evident in May 1968 Japan earthquake data, J. Geophys. Res., 74, 2256–2264, doi:10.1029/JA074i009p02256.
    陳耀淳, 「地震電離層都卜勒效應」, 國立中央大學, 碩士論文, 2007。
    李奕德, 「颱風電離層都卜勒效應」, 國立中央大學, 碩士論文, 2008。
    孫楊軼, 「福爾摩沙衛星一號與全球定位系統地面接收機觀測太陽活動極大期低緯電離層不規則體」, 國立中央大學, 碩士論文, 2009。
    交通部中央氣象局
    http://www.cwb.gov.tw/V7/index_home.htm
    NOAA Center For Tsunami Research
    http://nctr.pmel.noaa.gov/honshu20110311/
    Sugadaira Space Radio Observatory
    http://ssro.ee.uec.ac.jp/lab_tomi/HFD/index.html

    QR CODE
    :::