| 研究生: |
蕭辰翰 Chen-han Hsiao |
|---|---|
| 論文名稱: |
非熱電漿結合吸附劑脫附異丙醇效能探討 Desorption of IPA from Bead-Shaped Activated Carbon via Nonthermal Plasma |
| 指導教授: |
張木彬
Moo-been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 異丙醇 、脫附效率 、活性碳 、非熱電漿 |
| 外文關鍵詞: | desorption efficiency, activated carbon, nonthermal plasma, IPA |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
異丙醇為揮發性有機污染物之一,近年來成為高科技產業清洗製程中,主要使用之溶劑。就揮發性有機污染物控制技術中,利用吸附劑來處理揮發性有機物,是常見且經濟可行之方法,將空氣污染物吸附於吸附劑上,乾淨的氣體則排放至大氣中,其吸附劑脫附再生可利用變溫或變壓的程序。熱脫附程序中為了產生高溫的氣體或蒸汽,需要額外的能量消耗,且升溫或降溫時間長;變壓程序則是利用真空泵浦維持低壓狀態,使污染物脫附,相對的也需要增加能量的消耗與操作成本。而利用非熱電漿(Non-thermal plasma)產生高能量的電子與激發分子撞擊吸附劑中污染分子,使污染物分子脫離吸附劑達脫附之目的,且非熱電漿可操作於室溫與常壓下,快速啟動且無需維持高溫等優點,是一項新穎的技術。本研究使用顆粒狀活性碳吸附異丙醇,以不同脫附氣體於非熱電漿進行脫附效能之探討,脫附氣體分別使用氮氣、空氣與氧氣。結果顯示,氮氣為脫附氣體時,異丙醇脫附濃度降為零的時間最長為85分鐘,其依序為空氣的50分鐘與氧氣35分鐘。異丙醇脫附效率方面,氮氣為脫附氣體時最高,異丙醇脫附效率達82.14%,最低則為氧氣34.34%,於相同脫附時間15及30鐘時間下,異丙醇脫附效率仍以氮氣為脫附氣體時最高(37.18 %及57.88 %)。副產物方面,空氣與氧氣為脫附氣體時均有生成丙酮與CO2,氧氣則有CO生成,氮氣並無觀察到副產物生成,主要以異丙醇為主。脫附氣體流率增加異丙醇脫附效率提升5.1~8.4%,副產物選擇性下降。經重覆吸/脫附實驗後吸附劑BET比表面積下降平均孔洞尺寸上升,表面含氧官能基數量則增加,使用氮氣為脫附氣體,吸附劑表面積、平均孔徑及官能基變化最小。
How to effectively reduce volatile organic compound (VOC) emission into atmosphere has become an important environmental issue. Adsorption is commonly used as a control technique for reducing VOC emissions. Activated carbon and molecular sieve are generally used as absorbent materials which can be regenerated by desorption process either via temperature swing or pressure swing. However, these processes require additional energy for creating high temperature gas or low-pressure condition needed for desorption. A novel technique applying nonthermal plasma for effective desorption of VOCs from the absorbent materials by high energy electron impacts and excited molecules interaction is developed. This study evaluates the effectiveness of nonthermal plasma as a tool for the desorption of IPA from the bead-shaped activated carbon. The experimental results indicate that the IPA desorption efficiency obtained by different background gas are in the order as:N2 (82.14%) > AIR (47.05%) > O2 (34.34%), the products detected after plasma desorption include CO2, CO, and acetone when air or oxygen is used. The IPA desorption efficiency increases by approximately 5.1~8.4 % as the background gas flow rate is increased from 1000 to 2000 sccm. The BET surface area of bead-shaped activated carbon after repeated adsorption and plasma desorption decreases while the average pore diameter increases, and the amount of oxygen functional groups at surface increase as well.
Akishev, Y., Grushin, M., Karalnik, V., and Kochetov, I., Napartovich, A., and Trushkin, N., Generation of atmospheric pressure non-thermal plasma by diffusive and constricted discharges in air and nitrogen at the rest and flow, Journal of Physics: Conference Series, 2010.
Chang, C.L., and Lin, T.S., Decomposition of toluene and acetone in packed dielectric barrier discharge reactors, Plasma Chemistry and Plasma Processing, 2005, Vol. 25, 227-243.
Chang, J.S., Physics and chemistry of plasma pollution control technology, Plasma Sources Science and Technology, 2008, Vol. 17, 045004-045009.
Chen, H. L., Lee, H. M., Chen, S. H., and Chang, M. B., Review of packed-bed plasma reactor for ozone generation and air pollution control, Industrial and Engineering Chemistry Research, 2008, Vol. 47, 2122-2130.
Chen, H.L., Lee, H.M., Chen, S.H., Chang, M.B., Yu, S.J., and Li, S.N., Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications, Environ. Sci. Technol., 2009, Vol. 43, 2216-2227.
Chirokov, A., Gutsol, A., and Fridman, A., Atmospheric pressure plasma of dielectric barrier discharges, Pure and Applied Chemistry, 2005, Vol. 77, 487–495.
Eliasson, B., and Kogelschatz, U., Nonequilibrium volume plasma chemical processing, IEEE Transactins on Plasma Science, 1991, Vol. 77, 1063-1077.
Farrell, J. C., Manspeaker, C., and Luo, J., Understanding competitive adsorption of water and trichloroethylene in a high-silica Y zeolite, Microporous and Mesoporous Materials, 2003, Vol. 59, 205-214.
Gal'', A., Ogata, A., Futamura, S., and Mizuno, K., Mechanism of the Dissociation of chlorofluorocarbons during nonthermal plasma processing in nitrogen at atmospheric pressure, Journal of Physical Chemistry, 2003, Vol. 107, 8859-8866.
Gordillo-V´azquez, F.J., Air plasma kinetics under the influence of sprites, Journal of Physics D: Applied Physics, 2008, Vol. 41, 234016-234048.
Indarto, A., Choi, J.W., Lee, H., and Song, H.K., Decomposition of greenhouse gases by plasma, Environ Chem Lett., 2008, Vol. 6, 215-222.
Jarrige, J., and Vervisch, P., Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst, Applied Catalysis B: Environmental, 2009, Vol. 90, 74-82
Kim, H.H., Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects, Plasma Processes and Polymers, 2004, Vol. 1, 91-110.
Kim, H.H., Ogata, A., and Futamura, S., Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma, Applied Catalysis B: Environmental, 2008 , Vol. 79 , 356–367.
Kuroki, T., Fujioka, T., Kawabata, R., Okubo, M., and Yamamoto, T., Regeneration of honeycomb zeolite by nonthermal plasma desorption of toluene, IEEE Transactions on Industry Applications, 2009, Vol. 45, 10-15.
Kuroki, T., Fujioka, T., Okubo, M., and Yamamoto, T., Toluene concentration using honeycomb nonthermal plasma desorption, Thin Solid Films, 2007, Vol. 515, 4272– 4277.
Kuroki, T., Hirai, K., Kawabata, R., Okubo, M., and Yamamoto, T., Decomposition of adsorbed xylene on adsorbents using nonthermal plasma with gas circulation, IEEE Transactions on Industry Applications, 2010, Vol. 46, 672-679.
Lee, H.M., and Chang, M.B., Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor, Plasma Chemistry and Plasma Processing, 2001, Vol. 21, 329-343.
Marotta, E., Callea, A., Ren, Xianwen., Rea, M., and Paradisi, C., DC corona electric discharges for air pollution control, 2-Ionic intermediates and mechanisms of hydrocarbon processing, Plasma Process and Polymers, 2008, Vol. 5, 146-154.
Nehra, V., Kumar, A., and Dwivedi, H.K., Atmospheric non-thermal plasma source, International Journal of Engineering, 2008, Vol. 2, 53-68.
Oh, S.M., Kim, H.H., Einaga, H., Ogata, A., Futamura, S., and Park, D.W., Zeolite-combined plasma reactor for decomposition of toluene, Thin Solid Films, 2006, Vol. 40, 418-422.
Okubo, M., Inoue, M., Kuroki, T and Yamamoto, T., NOx reduction aftertreatment system using nitrogen nonthermal plasma desorption, IEEE Transactions on Industry Applications, 2005, Vol. 41, 891-899.
Okubo, M., Tanioka, G., Kuroki, T and Yamamoto, T., NOx concentration using adsorption and nonthermal plasma desorption, IEEE Transactions on Industry Applications, 2002, Vol. 38, 1196-1203.
Pacheco, M., Pacheco, J., Moreno, H., and Santana, A., Application of non-thermal plasma on gas cleansing, Physica Scripta, 2008, T131, 014017-014021.
Ramirez, D., Sullivan, P. D., Rood, M. J., and Hay, K. J., Equilibrium adsorption of phenol-, tire-, and coal-derived activated carbon for organic vapors, Journal of Environmental Engineering, 2004, Vol. 130, 231-241.
Song,Y.H., Kim, S.J., Choi, K.I., and Yamamoto, T., Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs, Journal of Electrostatics, 2002 , Vol. 55,189-201.
Suzuki, M., Adsorption engineering, Kodansha, Tokyo, 1990.
Trybal R. E., Mass transfer operation, McGraw-Hill 3rd , 1980, 624.
Van Durme, J., Dewulf, J., Leys, C., and Langenhove, H., Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review, Appl. Catal. B, 2008, Vol. 78, 324-333.
Yamamoto, T., and Yang C.L., Plasma desorption and decomposition, IEEE Transactions on Industry Applications, 1998, Vol. 35, 1877-1883.
Yamamoto, T., Tanioka, G., Okubo, M., and Kuroki, T., Water vapor desorption and adsorbent regeneration for air conditioning unit using pulsed corona plasma, Journal of Electrostatics, 2007, Vol. 65, 221–227.
Yoshida, K., Okubo, M., Kuroki, T., and Yamamoto, T., NOx aftertreatment using thermal desorption and nitrogen nonthermal plasma reduction, IEEE Transactions on Industry Applications, 2008, Vol. 44, 1403-1409.
Yoshida, K., Rajanikanth, B.S., and Okubo, M., NOx reduction and desorption studies under electric discharge plasma using a simulated gas mixture: A case study on the effect of corona electrode, Plasma Science and Technology, 2009, Vol.11, 327-333.
Yu, L., Pierrot, L., Laux, C. O., and Kruger, C. H., Effects of vibrational nonequilibrium on the chemistry of two-temperature nitrogen plasmas, Plasma Chemistry and Plasma Processing, 2001, Vol. 21, 483-503.
高正雄,電漿化學,復漢出版社,台南,1991年。
吳俊朋,「利用模擬實驗設計之方法分析酒精脫水之變壓吸附製程」,碩士論文,國立中央大學化學工程與材料研究所,中壢,2010年。
經濟部工業局,「高科技產業揮發性廢氣處理技術及操作處理成本」,2002。
蔣本基,「活性碳物理化學特性對VOCs吸附之影響」,工業污染防治,第58期,1996。
張豐堂、張智能,「半導體及光電產業現行揮發性有機廢氣控制設備之研發」,化工技術,第14卷,第1期,2006。
沈克鵬,「揮發性有機物收集及控制介紹」,工業技術研究院綠環所,2010。
周明顯,「揮發性有機物及臭味控制技術」,環保資訊月刊,第 54 期,2002。
日本西部技研公司網http://www.seibu-giken.co.jp/corru/purosave_e.html,
2002。
白曛綾、盧重興、張國財、曾映棠、黃欣惠,「操作績效自我評估管理制度手冊-活性碳吸附塔」,2003。
許菁珊,「沸石對於光電產業揮發性有機化合物之吸/脫附研究」,碩士論文,國立中山大學環境工程研究所,高雄,2005年。
劉世尹,「半導體廠PFCs 及VOCs 廢氣排放處理之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2008年。
黃晴澤,「以非電漿結合吸附劑處理C3F8之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2009年。
林渤原,「以非電漿結合觸媒與吸附劑處理C3F8之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2010年。
梁旭昇,「結合臭氧與氧化錳觸媒去除率本之研究」,碩士論文,國立中央大學環境工程研究所,中壢,2010年。
余泰緯,「以非熱電漿脫附丙酮效能之研究」,碩士論文,元培科技大學環境工程衛生研究所,新竹,2010年。