跳到主要內容

簡易檢索 / 詳目顯示

研究生: 尤芳銘
Fang-Ming Yu
論文名稱: 實用型模糊滑動模態控制器在非線性
Practical Fuzzy Sliding Mode Controller for NonlinearSystems
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 104
中文關鍵詞: 非線性系統單一模糊輸入模糊滑動模態控制器
外文關鍵詞: fuzzy sliding mode controller, single fuzzy input, nonlinear systems
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對一般非線性系統,及具有不確定之時間延遲非線性輸入的高階
    系統,提出一種基於狀態合成函數的單一模糊輸入模糊滑動模態控制器,以解決
    模糊控制器過多輸入變數及改善控制器輸出的抖動現象,大略可以分成以下三點
    來說明。
    1. 在降低輸入變數方面,我們共提出兩種方法,首先在單一模糊輸入類似模糊
    滑動模態控制方法中(single-fuzzy-input quasi fuzzy sliding mode control,
    SQ-FSMC),提出了符號距離(signed distance) 的狀態變數合成觀念,在不
    影響系統性能的前提下大幅減少規則數,第二種方法為去偶合的單一模糊輸
    入模糊滑動控制器(Decoupled single-fuzzy-input fuzzy sliding mode
    controller) 的設計,主要針對有偶合特性的系統來完成狀態合成,達到單一
    模糊輸入變數的目的。
    2. 在改善抖動現象的方面,主要藉著模糊控制器不斷調整在滑動平面附近的控
    制輸入,以改善在滑動平面上快速切換的現象,同時又能夠保持系統的強健
    性和穩定性。
    3. 具有自調機制的單一模糊輸入的控制器(a self-tuning single-fuzzy- input
    controllers, ST-SFIC) 能夠有效的處理具有非線性輸入的不確定時間延遲系
    統,經過解模糊化推導後的輸入增益調整法則,能夠使得控制輸入的效率大
    幅改善,並且在使用上相當方便。
    以上各種控制方法係利用倒單擺與球桿系統的平衡模擬以及利用具有不確定時
    間延遲非線性輸入的系統模擬來說明方法的可行性,並以實驗的結果驗証系統的
    強健性與穩定性。


    A practical fuzzy sliding mode controller for uncertain time-delay with nonlinear
    input systems and for a class of nonlinear systems is presented. The controller design
    deals with the problems of the dimensionality of fuzzy input variables in fuzzy logic
    control (FLC) and the chattering phenomena in sliding mode control (SMC)
    effectively. The main results of the proposed method are as follows.
    1. We propose two methods to reduce the number of fuzzy input variables. First,
    without affecting the performance of the system, the proposed single-fuzzy- input
    quasi fuzzy sliding mode controller (SQ-FSMC) by way of a composite state
    function reduces the number of rules greatly. Second ly, the design of decoupled
    single-fuzzy- input fuzzy sliding mode controller (SFI-FSMC) for the fourth-order
    coupled systems shows a better performance than previous work.
    2. For the chattering problem of the SMC, this phenomenon can be reduced
    effectively with the proposed controller by adjusting the control input near the
    sliding hyperplane.
    3. A self-tuning single-fuzzy-input controller (ST-SFIC) can be easily applied to
    uncertain time-delay dynamical systems with nonlinear input. The self-tuning
    scheme dramatically improves the control input behavior. Also, the chattering
    phenomenon is eliminated effectively. The control algorithm is convenient and
    easy to utilize.
    The above methods have been illustrated by the simulation results of the pole and the
    cart systems as well as the ball and beam systems. In addition, the uncertain
    time-delay with a nonlinear input system can be stabilized to the equilibrium. The
    experimental results of the present seesaw system with external disturbance are given.

    Contents I Abstract III List of Figures V List of Tables VIII Chapter 1 Introduction 1.1 Motivation and Background 1 1.2 Organization and Main Tasks 3 Chapter 2 Problems Formulations 2.1 Single- input Plant System 8 2.2 Coupled System 9 2.3 Uncertain Time-delay System with Nonlinear Input 11 Chapter 3 Methodology 3.1 Design of Single-fuzzy- input Quasi-FSMC (SQ-FSMC) 16 3.2 Design of Decoupled Fuzzy Logic Controller 21 3.3 Design of FSMC for Uncertain Time-delay Systems with Nonlinear Input 25 3.4 Design of Self-tuning Single-fuzzy- input Controller (ST-SFIC) for Uncertain Time-delay Systems with Nonlinear Input 31 3.4.1 Single- fuzzy- input Controller (SFIC) for Uncertain Time-delay Systems with Nonlinear Input 31 3.4.2 Self-tuning Scheme and Scaling Factor 34 Chapter 4 Examples and Simulations 4.1 Two Examples of Single-fuzzy- input Quasi-FSMC (SQ-FSMC) 46 4.2 Three Examples of Decoupled Fuzzy Logic Controller 51 4.3 Example of FSMC for Uncertain Time-delay Systems with Nonlinear Input 56 4.4 Example of Self- tuning Single-fuzzy- input Controller (ST-SFIC) for Chattering Elimination of Uncertain Time-delay Systems with Nonlinear Input 59 Chapter 5 Discussion and Conclusions 84 References 86 Author’s Information 92 Publication List 93

    86
    References
    [1] H. Allamehzadeh and J. Y. Cheung, “Design of a stable and robust fuzzy
    controller for a class of nonlinear system”, Proceedings of the fifth IEEE
    International Conference on Published vol. 3, pp. 2150-2154, 1996.
    [2] G. Bartolini and A. Ferrara, “Multivariable fuzzy sliding mode control by using
    a simplex of control vectors”, in Fuzzy reasoning in Information, Decision, and
    Control Systems, S. G. Tzafestas and A. N. Venetsanopoulos, Eds. Amsterdam,
    The Netherlands: Kluwer, pp. 307-328, 1994.
    [3] C. L. Chen, P. C. Chen, and C. K. Chen, “Analysis and design of fuzzy control
    system”, Fuzzy Sets Syst, vol. 57, no. 2, pp. 125-140, July 1993.
    [4] S. Y. Chen, F. M. Yu, and H. Y. Chung, “Decoupled fuzzy controller design with
    single- input fuzzy logic”, Fuzzy Sets and Systems, vol. 129, pp. 335-342, 2002.
    [5] Y. H. Chen, “Adaptive robust control of uncertain systems with measurement
    noise”, Automatica, vol. 28, pp. 715–728, 1992.
    [6] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design and stability analysis of
    single- input fuzzy logic controller”, IEEE Trans. Syst., Man, Cybern. B, vol. 30,
    no. 2, pp. 303-309, April 2000.
    [7] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single- input fuzzy logic
    controller and its properties”, Fuzzy Sets and Systems, vol. 106, pp. 299-308,
    1999.
    87
    [8] S. B. Choi and J. S. Kim, “A fuzzy-sliding mode controller for robust tracking
    of robotic manipulators”, Mechatronics, vol. 7, pp. 199–216, 1997.
    [9] C. C. Fuh and P. C. Tung, “Robust stability analysis of fuzzy control systems”,
    Fuzzy Sets and Systems, vol. 88, pp. 289–298, 1997.
    [10] S. Galicher and L. Foulloy, “Fuzzy controllers: Synthesis equivalence”, IEEE
    Trans. Fuzzy Syst., vol. 3, pp. 140-148, May 1995.
    [11] J. S. Glower and J. Munighan, “Design fuzzy controllers from a variable
    structures standpoint”, IEEE Trans. Fuzzy Syst., vol. 5. no. 1. pp. 138-144,
    February 1997.
    [12] Q. P. Ha, D. C. Rye, and H. F. Durrant Whyte, “Fuzzy moving sliding mode
    control with application to robotic manipulators”, Automatica, vol. 35, pp.
    607-616, 1999.
    [13] K. C. Hsu, “Adaptive variable structure control design for uncertain
    time-delayed systems with nonlinear input”, Dynamics and Control, vol. 8, pp.
    341-354, 1998.
    [14] G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design for
    nonlinear systems”, Fuzzy Sets and Systems, vol. 48, pp. 279-287, 1992.
    [15] Y. R. Hwang and M. Tomizuka, “Fuzzy smoothing algorithms for variable
    structure systems”, IEEE Trans. Fuzzy Syst., vol. 2, pp. 277-284, Nov. 1994.
    [16] A. Ishigame, T. Furakawa, S. Kawamoto, and T. Taniguchi, “Sliding mode
    controller design based on fuzzy inference for nonlinear systems”, IEEE Trans
    88
    Industrial Electronics, vol. 40, pp. 64-70, 1993.
    [17] S. W. Kim and J. J. Lee, “Design of a fuzzy controller with fuzzy sliding
    surface”, Fuzzy Sets and Systems, vol. 71, pp. 359-367, 1995.
    [18] C. C. Kung and C. C. Liao, “Fuzzy-sliding mode controller design for tracking
    control of non- linear system”, Proceedings of the American Control Conference,
    pp. 180-184, June 1994.
    [19] C. C. Kung and S. C. Lin, “Fuzzy controller design: A sliding mode approach”,
    in Fuzzy Reasoning in Information, Decision, and Control Systems, S. G.
    Tzafestas and A. N. Venetsanopoulos, Eds. Amsterdam, The Netherlands:
    Kluwer, pp. 277-306, 1994.
    [20] M. L. Lee, H. Y. Chung, and F. M. Yu, “Modeling of hierarchical fuzzy
    systems”, Fuzzy Sets and Systems. (to appear)
    [21] M. L. Lee, “Hierarchical fuzzy control with applications to seesaw systems”, M.
    S. thesis, Department of Electrical Engineering, National Central University,
    2000.
    [22] H. X. Li and H. B. Gatland, “Conventional fuzzy control and its enhancement”,
    IEEE Trans. Syst., Man, Cybern. B, vol. 26, pp. 791–797, 1996.
    [23] H. X. Li and H. B. Gatland, “A new methodology for designing a fuzzy logic
    controller”, IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 505–512, 1995.
    [24] W. S. Lin, and C. S. Chen, “Robust adaptive sliding mode control using fuzzy
    modelling for a class of uncertain MIMO nonlinear systems”, Control Theory
    89
    and Applications, IEE Proceedings part D, vol. 149, pp 193-201, 2002.
    [25] K. Liu and F. L. Lewis, “Some issues about fuzzy control”, in proc. IEEE Conf.
    Decision Contr. , San Antonio, TX, vol. 2, pp. 1743-1748, Dec. 1993.
    [26] J. C. Lo and Y. H. Kuo, “Decoupled Fuzzy Sliding-Mode Control”, IEEE Trans.
    Fuzzy Syst., vol. 6. no. 3, pp. 426-435, August 1998.
    [27] Y. S. Lu and J. S. Chen, “A self-organizing fuzzy sliding-mode controller
    design for a class of nonlinear servo systems”, IEEE Trans. Ind. Electron., vol.
    41, pp. 492–502, Oct. 1994.
    [28] N. Luo and M. De La Sen, “State feedback sliding mode control of a class of
    uncertain time delay systems”, IEE Proceeding part D, vol. 140, pp. 261-274,
    1993.
    [29] N. Luo, M. De La Sen, and J. Rodellar, “Robust stabilization of a class of
    uncertain time delay systems in sliding mode”, Int. J. of robust and nonlinear
    control, vol. 7, pp. 59–74, 1997.
    [30] M. S. Mahmoud, “Adaptive control of a class of time-delay systems with
    uncertain parameters”, Int. J. Control, vol. 63, pp. 937–950, 1996.
    [31] E. H. Mamdani, “Applications of fuzzy algorithms for simple dynamic plants”,
    Proc. IEE 121, pp. 1585-1588, 1974.
    [32] R. K. Mudi and N. R. Pal, “A robust self-tuning scheme for PI- and PD-type
    fuzzy controllers”, IEEE Trans. Fuzzy Syst., vol. 7. no. 1. pp. 2-16, February
    1999.
    90
    [33] S. Oucheriah, “Robust sliding mode control of uncertain dynamic delay systems
    in the presence of matched and unmatched uncertainties”, ASME J. of Dynamic
    Systems, Measurement, and Control, vol. 119, pp. 69–72, 1997.
    [34] S. Oucheriah, “Dynamic compensation of uncertain time-delay systems using
    variable structure approach”, IEEE Trans. on Circuits and Systems-I, vol. 42, pp.
    466–470, 1995.
    [35] R. Palm, “Designs of Fuzzy Controllers”, in Fuzzy Systems Modeling and
    Control, (H. T. Nguyen, M Sugeno, Eds), The Handbooks of Fuzzy Sets,
    Kluwer Academic, Boston, pp. 227-272, 1998.
    [36] R. Palm, “Robust control by fuzzy sliding mode”, Automatica, vol. 30, no.9, pp.
    1429–1437, 1994.
    [37] R. Palm, “Sliding mode fuzzy control”, in Int. Control Fuzzy Syst., pp. 519–526,
    1992.
    [38] K. Shyu and J. Yan, “Variable-structure model following adaptive control for
    systems with time-varying delay”, Control theory and Advanced Technology,
    vol. 10, pp. 513-521, 1994.
    [39] C. H. Tsai, H. Y. Chung, and F. M. Yu, “Neuro-sliding mode control with its
    applications to seesaw systems”, IEEE Trans. on Neural Network. (to appear)
    [40] V. I. Utkin, K. D. Young, “Methods for constructing discontinuity planes in
    multidimensional variable structure systems”, Automation Remote Control, vol.
    39, pp. 1466-1470, 1979.
    [41] H. B. Verbruggen, H. J. Zimmermann, and R. Babuska, “Fuzzy Algorithms for
    Control”, Kluwer Academic, Boston, 1999.
    [42] Z. W. Woo, H. Y. Chung, and J. J. Lin, “A PID type fuzzy controller with
    self-tuning scaling factors”, Fuzzy Sets and Systems, vol. 115, pp.321-326, 2000.
    [43] S. Y. Yi and M. J. Chung, “Systematic design and stability analysis of a fuzzy
    logic controller”, Fuzzy Sets and Systems, vol. 72, pp. 271–298, 1995.
    [44] F. M. Yu, H. Y. Chung, and S. Y. Chen, “Fuzzy-sliding mode controller design
    for uncertain time-delayed systems with nonlinear input”, Fuzzy Sets and
    Systems. (to appear)
    [45] F. M. Yu, H. Y. Chung, and C. N. Huang, “The Robust Stability of Seesaw
    System with Fuzzy Logic Control”, International Journal of Computer
    Applications in Technology.. (to appear)

    QR CODE
    :::