跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李佳穎
Lee Chia Ying
論文名稱: Equality of Numerical Ranges of 4×4 Matrix Powers
指導教授: 高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 52
中文關鍵詞: 矩陣數值域
外文關鍵詞: Matrix, Numerical Ranges
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探討當W(A) 與 W(A^k) 相等,對於所有 1 ≤ k ≤ n + 1。我們根據方陣A的unitary-similarity-invariant結構來尋找A的條件。
    我們首先呈現當2×2矩陣A再一次到三次時W(A)皆相等,若且唯若A為冪等(idempotent)。則當3×3矩陣A在一次到四次時W(A)皆相等,若且唯若A么正相似(unitarily similar)於2×2冪等方正B與矩陣C的直和,且矩陣C滿足W(C^k) ⊆ W(B) 對於所有 1 ≤ k ≤ 4。我們的對於4×4矩陣的主結果將延續這個方向進行討論。


    In this thesis, we are interested in the question of when $W(A)$ equals $W(A^k)$ for all $1\le k\le n+1$. We look for conditions in terms of the unitary-similarity-invariant structure of $A$. We show that if $A$ is $2\times 2$, then $W(A)=W(A^k)$ for all $1\le k\le 3$ if and only if $A$ is idempotent. We also show that if $A$ is $3\times 3$, then $W(A)=W(A^k)$ for all $1\le k\le 4$ if and only if $A$ is unitarily similar to a direct sum of the form $B\oplus C$, where $B$ is a $2\times 2$ idempotent and $C$ satisfies $W(C^k)\subseteq W(B)$ for all $1\le k\le 4$. Our main results are the analysis of $4 \times 4$ matrices along this line.

    Chapter 1. Introduction................................................................1 Chapter 2. Preliminaries................................................................3 2.1 Basic properties of numerical range ................................. 3 2.2 Kippenhahn Curve..................................................4 Chapter 3. Equality of Numerical Ranges of 2 × 2 and 3 × 3 Matrices..................13 3.1 Equality of Numerical Ranges of 2 × 2 Matrices ................... 13 3.2 Equality of Numerical Ranges of 3 × 3 Matrices....................16 Chapter 4. Equality of Numerical Ranges of 4 × 4 Matrices............................26 References...............................................................44

    [1] E. Brieskorn and H. Knorrer, Plane Algebraic Curves, Birkhauser Verlag, Basel, 1986.
    [2] C.-T. Chang, H.-L. Gau, K.-Z. Wang, Equality of higher-rank numerical ranges of matrices, Linear Multilinear Algebra, 62 (2014) 626-638.
    [3] J. L. Coolidge, A Treatise on Algebraic Plane Curves, Dover, New York, 1959.
    [4] H.-L. Gau, K.-Z. Wang, P. Y. Wu, Euqality of Numerical Ranges of Matrix Powers, Linear Algebra Appl., to appear.
    [5] H.-L. Gau, P. Y. Wu, Condition for the numerical range to contain an ellipticdisc, Linear Algebra Appl., 364 (2003) 213-222.
    [6] K.-F. Lin, Numerical Ranges and Numerical Radii of Products of 3×3 Matrices, Master’s thesis, National Central University, 2015.
    [7] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
    [8] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
    [9] D. S. Keeler, L. Rodoman and I. M. Spitkovsky, The Numerical Range of 3 × 3 Matrices. Linear Algebra Appl., 252 (1997), 115-139.
    [10] R. Kippenhahn, Uber den Wertevorrat einer Matrix, Math. Nachr., 6 (1951), 193-228.
    [11] Y.-H. Liu, Elliptic Numerical Range of 4x4 matirces, Master’s thesis, National Central University, 2003.
    44
    [12] F. D. Murnaghan, On the field of values of a square matrix, Proc. Nat. Acad. Sci. U.S.A., 18 (1932), 246-248.
    [13] S.-H. Tso, P. Y. Wu, Matrical ranges of quadratic operators, Rocky Mountain J. Math., 29 (1999) 1139-1152.
    [14] P. Y. Wu, Numerical Ranges of Hilbert Space Operators, Cambridge University Press, Cambridge, to appear.

    QR CODE
    :::