| 研究生: |
林玉智 Yu-Chih Lin |
|---|---|
| 論文名稱: |
美國短中長期公債殖利率預測 |
| 指導教授: |
徐之強
Chih-Chiang Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 經濟學系 Department of Economics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 美國公債殖利率 、機器學習預測 、利率期限結構 |
| 外文關鍵詞: | US Treasury Yield, Machine Learning Prediction, Yield Curve Structure |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
美國公債殖利率對經濟影響重大,利率期限結構和殖利率曲線變化常被用來 預測景氣循環的變化。一般而言,美國公債殖利率與聯邦基金利率關係緊密,市場 依據聯準會的公開信息預測殖利率。然而,近年來因疫情、烏俄戰爭和能源危機, 通膨問題嚴峻,聯準會為穩住經濟而頻繁調整貨幣政策,導致預測難度增加。
本研究旨在利用更多元的總體經濟、貨幣政策和金融變數,構建模型來預測美 國公債殖利率。傳統線性預測方法容易因過度擬合而影響準確性,因此引入機器學 習方法解決非線性問題和高維度數據處理,通過比較不同的機器學習預測模型與 傳統迴歸模型,尋找短中長期公債殖利率的最佳預測方法。
研究結果顯示,傳統基準模型適合極短期預測,但隨預測期延長,預測能力下降。 機器學習模型在處理高維度非線性數據上表現出色,特別是在兩期以上的預測中 更準確。其中,隨機森林模型在短中長期美國公債殖利率預測中表現最佳且穩定。 深度神經網絡模型在八期以上的預測中表現良好,但在面對緊急政策調整時誤差 較大。總體而言,隨機森林模型在短中長期美國公債殖利率預測中均展現出高度穩 定性和準確性。
U.S. Treasury yields have a significant impact on the economy, and the term structure of interest rates and changes in the yield curve are often used to predict economic cycles. Generally, U.S. Treasury yields are closely related to the federal funds rate, with the market predicting yields based on information released by the Federal Reserve. However, in recent years, the severe inflation problems caused by the pandemic, the Russia-Ukraine war, and the energy crisis have led to frequent adjustments in monetary policy by the Federal Reserve to stabilize the economy, increasing the difficulty of making accurate predictions.
This study aims to construct a model to predict U.S. Treasury yields using a more diverse set of macroeconomic, monetary policy, and financial variables. Traditional linear prediction methods often suffer from overfitting, affecting accuracy. Therefore, machine learning methods are introduced to address nonlinear issues and handle high-dimensional data. By comparing different machine learning prediction models with traditional regression models, the study seeks to identify the best prediction method for short, medium, and long-term Treasury yields.
The research results indicate that traditional benchmark models are suitable for extremely short-term predictions, but their predictive ability declines as the forecast period extends. Machine learning models excel in handling high-dimensional nonlinear data, particularly showing greater accuracy in predictions beyond two periods. Among them, the random forest model performs best and remains stable in predicting short, medium, and long-term U.S. Treasury yields. The deep neural network model performs well in predictions beyond eight periods but shows larger errors when faced with emergency policy adjustments. Overall, the random forest model demonstrates high stability and accuracy in predicting short, medium, and long-term U.S. Treasury yields.
英文文獻
1. Ali, Z. H., and Burhan, A. M. (2023) “Hybrid Machine Learning Approach for Construction Cost Estimation: An Evaluation of Extreme Gradient Boosting Model”, Asian Journal of Civil Engineering, 24, 2427–2442.
2. Breiman, L. (1996), “Bagging Predictors Machine Learning”, 24, 123–140.
3. --------------- (2001), “Random Forests Machine Learning”, 45, 5–32.
4. Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985), “A Theory of the Term Structure
of Interest Rates”, In Theory of valuation (pp. 129-164).
5. Dunn, K. (2021), “Avoid R-squared to judge regression model performance”, Towards Data Science.
6. Fisher, I(1896), “Appreciation and Interest: A Study of the Influence of Monetary Appreciation and Depreciation on the Rate of Interest with Applications to the Bimetallic Controversy and the Theory of Interest”, American economic association, Vol. 11, No. 4.
7. Gu, S., Kelly, B., and Xiu, D. (2020),“Empirical Asset Pricing via Machine Learning” The Review of Financial Studies, 33(5), 2223-2273.
8. Harvey, C. R. (1989), “Forecasts of Economic Growth from the Bond and Stock Markets”, Financial Analysts Journal, 45(5), 38-45.
9. Hastie, T., Tibshirani, R., and Friedman, J. (2001), “The Elements of Statistical Learning: Data Mining, Inference and Prediction”, New York: Springer.
10. Hoerl, A. E., and Kennard, R. W. (1970), “Ridge Regression: Biased Estimation for Nonorthogonal Problems”, Technometrics, 12(1), 55–67.
11. Luque Raya, I.M. and Luque Raya, P. (2023), "Machine learning algorithms applied to the estimation of liquidity: the 10-year United States treasury bond", European Journal of Management and Business Economics.
12. Malkiel, B. G.(1973), “A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing”, W. W. Norton & Company.
13. Medeiros, M. C., Vasconcelos, G. F. R., Veiga, Á ., and Zilberman, E. (2019).,
“Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine
Learning Methods”, Journal of Business & Economic Statistics, 39(1), 98–119.
- 33 -
14. Medeiros, M. C., and Mendes, E. (2016), “l1-Regularization of High-Dimensional Time-Series Models With Non-Gaussian and Heteroskedastic Errors,” Journal of Econometrics, 191, 255–271.
15. Schwarz, G. E.(1978), “Estimating the dimension of a model”, Annals of Statistics 6(2): 461–464.
16. Shiller, R. J., and McCulloch, J. H. (1990). “The term structure of interest rates”, Handbook of monetary economics, 1, 627-722.
17. Tibshirani, R. (1996), “Regression Shrinkage and Selection via the LASSO,” Journal of the Royal Statistical Society, Series B, 58, 267–288.
18. Zou, H., and Hastie, T. (2005), “Regularization and Variable Selection via the Elastic Net,” Journal of the Royal Statistical Society, Series B, 67, 301–320.
19. Zou, H. (2006), “The Adaptive LASSO and Its Oracle Properties,” Journal of the American Statistical Association, 101, 1418–1429.
中文文獻
1. 李怡庭(2021),「貨幣銀行學(四版)」,雙葉書廊
2. 延任(2022),「美國公債殖利率與市場指數關聯性實證研究」,國立臺灣
大學經濟系在學專班碩士論文
3. 葉憲之(2023),「參加美國紐約聯邦準備銀行「貨幣政策執行」研習課程
出國報告」,中央銀行
4. 簡嘉瑛(2009),「美國公債殖利率與景氣循環指標間關聯性之探討」,國
立中央大學財務金融學系碩士論文