跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭至祥
Chih-hsiang Hsiao
論文名稱: 傘形齒輪旋轉鍛造製成程有限元素分析
指導教授: 葉維磬
Wei-ching Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 旋轉鍛造擺輾鍛造傘形齒輪有限元素分析
外文關鍵詞: rotary forging, orbital forging, bevel gear, FEM
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 旋轉鍛造亦稱擺輾鍛造,是一種結合滾壓和鍛造的加工方式,其成型所需負載較傳統鍛造低,並同時擁有鍛造的優點,如鍛件表面光滑、減少材料浪費與可有效降低加工時間等。本文將研究以二階段旋轉鍛造成型傘形齒輪,並利用有限元素軟體Deform-3D進行模擬分析,以3因子3水準全因子共27組模擬組數,透過回歸建立二階含交互項之多項式預測模型,求得在良好填充率下,軸向成型力峰值最小化之最佳化錐形胚料設計。


    Orbital forging also called rotary forging, is a combination of rolling and forging processing methods, which required lower load than traditional forging. It has many advantages, such as forging smooth surface, which can effectively reduce material waste and reduce processing time and so on. This paper proposes a new procedure for forming bevel gear in two steps of rotary forging. The FEM simulation model of cold rotary forging is established under Deform-3D software environment. Regression analysis simulation results to obtain the tapered billet design optimization in minimizing the peak axial force and good fill rate.

    中文摘要 ................................................................................................................ i 英文摘要 ............................................................................................................... ii 致謝 ...................................................................................................................... iii 目錄 ...................................................................................................................... iv 圖目錄 .................................................................................................................. vi 表目錄 ................................................................................................................ viii 第一章 序論 ................................................................................................... 1 1-1 前言 .................................................................................................... 1 1-2 文獻回顧............................................................................................ 3 1-3 研究動機、目的與方法 ................................................................... 8 第二章 旋轉鍛造分析 ................................................................................. 10 2-1 旋轉鍛造運動分析 ......................................................................... 10 2-2 成型原理.......................................................................................... 18 2-3 傘形齒輪模具之建立 ..................................................................... 20 第三章 有限元素法與實驗設計法 ............................................................. 23 3-1 有限元素模擬 ................................................................................. 23 3-2 模型建構方法 ................................................................................. 33 第四章 結果與討論 ..................................................................................... 36 v 4-1 模擬驗證.......................................................................................... 36 4-2 模型回歸與檢驗 ............................................................................. 40 4-3 體積對填充率及軸向成型力峰值影響之效應 ............................. 48 4-4 幾何特徵對填充率及軸向成型力峰值影響之效應 ..................... 49 4-5 品質特性最佳化 ............................................................................. 58 第五章 結論與建議 ..................................................................................... 60 5-1 結論 .................................................................................................. 60 5-2 建議 .................................................................................................. 61 參考文獻 ......................................................................................................... 62 附錄一 ......................................................................................................... 65 附錄二 ......................................................................................................... 70

    [1] Choi, S., Na, K. H., & Kim, J. H. (1997). Upper-bound analysis of the rotary forging of a cylindrical billet. Journal of Materials Processing Technology, 67(1), 78-82.
    [2] Han, X., & Hua, L. (2009). Comparison between cold rotary forging and conventional forging. Journal of mechanical science and technology, 23(10), 2668-2678.
    [3] Schey, J. A., Venner, T. R., & Takomana, S. L. (1982). Shape changes in the upsetting of slender cylinders. Journal of Engineering for Industry, 104(1), 79-83.
    [4] Zhang, M. (1984). Calculating force and energy during rotating forging. In 3 rd International Conference on Rotary Metalworking Processes(ROMP 3) (pp. 115-124).
    [5] Shivpuri, R. (1988). Past developments and future trends in the rotary or orbital forging process. Journal of Materials Shaping Technology, 6(1), 55-71.
    [6] Decheng, Z., Shijian, Y., Wang, Z. R., & Zhenrui, X. (1992). Defects caused in forming process of rotary forged parts and their preventive methods. Journal of Materials Processing Technology, 32(1), 471-479.
    [7] Guangchun, W., Kemin, X., & Yan, L. (1997). Methods of dealing with some problems in analyzing rotary forging with the FEM and initial application to a ring workpiece. Journal of materials processing technology, 71(2), 299-304.
    [8] Oh, H. K., & Choi, S. (1997). A study on center thinning in the rotary forging of a circular plate. Journal of materials processing technology, 66(1), 101-106.
    [9] Liu, G., Yuan, S. J., Wang, Z. R., & Xie, T. (2009). Finite element model and simulation of rotary forging of a disc. ACTA Metallurgica Sinica (English Letters), 13(2), 470-475.
    [10] Guangchun, W., & Guoqun, Z. (2002). Simulation and analysis of rotary forging a ring workpiece using finite element method. Finite elements in analysis and design, 38(12), 1151-1164.
    [11] Liu, G., Yuan, S. J., Wang, Z. R., & Zhou, D. C. (2004). Explanation of the mushroom effect in the rotary forging of a cylinder. Journal of materials processing technology, 151(1), 178-182.
    [12] Montoya, I., Santos, M. T., Pérez, I., González, B., & Puigjaner, J. F. (2008). Kinematic and sensitivity analysis of rotary forging process by means of a simulation model. International Journal of Material Forming, 1(1), 383-386.
    [13] Hua, L., & Han, X. (2009). 3D FE modeling simulation of cold rotary forging of a cylinder workpiece. Materials & Design, 30(6), 2133-2142.
    [14] Han, X., & Hua, L. (2009). Effect of size of the cylindrical workpiece on the cold rotary-forging process. Materials & Design, 30(8), 2802-2812.
    [15] Deng, X., Hua, L., Han, X., & Song, Y. (2011). Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear. Materials & Design, 32(3), 1376-1389.
    [16] Deng, X. B., Hua, L., & Han, X. H. (2011). Three-dimensional FE modelling simulation of cold rotary forging of spiral bevel gear. Ironmaking & Steelmaking, 38(2), 101-111.
    [17] Han, X., & Hua, L. (2012). Friction behaviors in cold rotary forging of 20CrMnTi alloy. Tribology International, 55, 29-39.
    [18] Samołyk, G. (2013). Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear. Journal of Materials Processing Technology, 213(10), 1692-1702.
    [19] Marciniak, Z. (1970). A rocking-die technique for cold-forming operations. Mechanical Production Engineering, 117, 792-797.
    [20] Decheng, Z., Shijian, Y., Wang, Z. R., & Zhenrui, X. (1992). Defects caused in forming process of rotary forged parts and their preventive methods. Journal of Materials Processing Technology, 32(1), 471-479.
    [21] Standring, P. M., & Appleton, E. (1980). Rotary forging developments in Japan I. Machine development and forging research. Journal of Mechanical Working Technology, 3(3), 253-273.
    [22] Slater, R. A. C., & Appleton, E. (1971). Some experiments with model materials to simulate the rotary forging of hot steels.
    [23] Oudin, J., Ravalard, Y., Verwaerde, G., & Gelin, J. C. (1985). Force, torque and plastic flow analysis in rotary upsetting of ring shaped billets. International journal of mechanical sciences, 27(11), 761-780.
    [24] 何明祥, 斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究, 碩士論文, 國立高雄應用科技大學, 2008
    [25] 胡建軍, 李小平, ”Deform-3D塑性成型CAE應用教程”北京大學出版社, 2011年1月
    [26]葉怡成, “製程與產品最佳化” 五南出版社, 2001年6月

    QR CODE
    :::