| 研究生: |
林柏青 Poching Lin |
|---|---|
| 論文名稱: |
碎波帶漂沙與波動特性研究 Study of sediment transport and infragravity waves in the surf zone |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 203 |
| 中文關鍵詞: | 碎波帶 、群波 、長波振盪 、Hilbert轉換 、薄層流 、漂沙 |
| 外文關鍵詞: | Hilbert transform, infragravity waves, wave groups, surf zone, sheet flow, sand drift |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分別在台灣西海岸中部與南部地區,以波浪儀、流速計及濁度計等多種儀器觀測碎波帶附近之波浪、流及底床上之懸浮質濃度分佈,並安裝水下攝影機同步觀察底床附近之懸浮質與薄層流輸沙,以深入分析並探討碎波帶的漂沙活動。
碎波帶附近波浪因淺化碎波,能量劇烈交換引致漂沙現象。而外海入射波浪常具有群波結構,此等隱含長週期波能振盪的群波,也會直接影響底床輸沙;另外因地形或氣候因素在近岸水域常發生長週期之水面波動,此等長週期之水位振盪現象因含有相當份量之能量對於碎波帶之漂沙活動自有其重要性。本研究分析方法除了以平滑化瞬時波能法(SIWEH)解析群波現象外,另以Hilbert 轉換及內含模組函數(Intrinsic Mode Function)解析能譜分佈在時間歷程之變化,可以更清楚瞭解碎波帶附近波能變化與漂沙活動之關係。
資料分析結果顯示近岸底床附近之懸浮質濃度具有一固定背景值,其變化則有週期性之驟增現象,並與入射波浪之群波特性有密切關係。底床附近之懸浮質濃度驟增量可達背景濃度值的2~3倍,影響近岸懸浮質輸沙量估算結果甚鉅。此外,波浪由碎波帶外向岸接近時其群波特性會因波浪碎波而逐漸減弱。在碎波帶外波浪群波特性較強時,由群波主控底床之懸浮質濃度變化,但在碎波帶內此種現象則較不明顯。
為能進一步探討波浪在碎波帶之輸沙行為,本研究結合現場波浪、三維流速、濃度剖面觀測與同步影像分析,俾能在定性與定量上探討底床漂沙活動時作清楚明確的闡述。本研究並由同步現場攝影發現碎波帶內之主要漂沙機制來自沙漣結構上的薄層流及懸浮質輸沙;在粒徑0.27mm水深約1.7m波高0.34m沙漣高5.5cm底流超過40cm/s時即可引發薄層流。由於懸浮載、薄層流以及底移載在碎波帶內常是三者並存,其實際分佈與量化分析仍有待進一步觀測與探討。
Field experiments were conducted to investigate the wave, current and sediment suspension across the surf zone by deploying wave gauges, 3D-ACM current meters and OBS turbidity meters at Taichung and Ampin, in the west coast of Taiwan. A synchronized video camera was also installed underwater to observe sheet flows and sediment movement on ripple beds.
Generation of sand drift in surf zone is mainly due to energy released from shoaling waves. Wave groups in approaching waves and surf beats usually imply energy undulation of low frequencies, which may affect the movement of bed sediments. A new approach using Hilbert transform and Intrinsic Mode Functions analysis to explore the effect of energy grouping and undulating on sediment suspension is presented.
An interesting bursting phenomenon of near-bed sediment concentration was found dominating in surf zone, which was closely related to incident wave groups. Peak concentrations of suspended sediment associated with wave groups were 2~3 times larger than that without wave groups.
It is found the main mechanisms of sand drift in the surf zone are sheet flows and sediment suspension. The criterion for inception of sheet flow at depth of 1.7m, ripple height of 5.5cm and sand of 0.27mm in diameter, is about 40cm/s in current speed. The suspension load, bed load and sheet flows are found all responsible for the sand drifts in surf zone. This study is far from being complete but should provide readers a good insight on sediment transports in surf zone. It needs further observations to clarify the amount of sand actually moved by sheet flow alone.
參 考 文 獻
1. Bagnold, R. A., (1946) “Motion of waves in shallow water: Interaction between waves and sand bottoms,” Proc. R. Soc. London Ser. A, 187, pp1-15.
2. Battjes, J.A. (1974) “Surf similarity,” Proc. 14th Int. Conf. Coastal Eng., ASCE, Vol. 1, pp. 466-480.
3. Beach, R. A. and R. W. Sternberg (1987) “The influence of infragravity motions on suspended sediment transport in the inner surf zone,” Proc. Coastal Sediments’87, ASCE, Vol. 1, New Orleans, pp. 913-928.
4. Blondeaux, P. and G. Vittor (1990) “Oscillatory flow and sediment motion over a rippled bed,” Proc. 22nd Int. Conf. Coastal Eng., ASCE, Vol. 3, pp. 2186-2199.
5. Bowen, A. J. and D. L. Inman (1971) “Edge waves and crescentic bars,” J. Geophys. Res., Vol. 74, pp. 8662-8671.
6. Brennikmeyer, B. M. (1974) “Mode and period of sand transport in the surf zone,” Proc. 14th Int. Conf. Coastal Eng., ASCE, Vol. 2, pp. 812-827.
7. Carsten, M. R., F. M. Nielsen, and H. D. Altinbilek, (1969) “Bed forms generated in the laboratory under oscillatory flow,” Tech. Memo. 28, Coastal Eng. Res. Center, Washington, D. C..
8. Conley, D. C. and D. L. Inman (1992) “Field observation of the fluid-granular boundary layer under near-breaking eaves,” J. Geophy. Res., Vol. 97, No. C6, pp. 9631-9643.
9. Davies, A. G. and R. H. Wilkinson (1978) “Sediment motion caused by surface water waves,” Proc. 16th Int. Conf. Coastal Eng., ASCE, Vol. 2, pp. 1577-1595.
10. Dong, P. and K. Zhang (1999) “Two-phase flow modeling of sediment motions in oscillatory sheet flow,” Coastal Eng., 36, pp 87-109.
11. Fairchild, J. C. (1959) “Suspended sediment sampling in oscillatory wave action,” Tech. Memo 115, Beach Erosion Board, U.S. Army Corps of Engineers.
12. Funke E.R. and E.P.E. Mansard (1980) “On the synthesis of realistic sea state in a Laboratory flume,” Proc. 17th Int. Conf. Coastal Eng., ASCE, Vol. 3, pp. 2974-2991.
13. Hagatun, K. and K.J. Eidsvik (1986) “Oscillating turbulent boundary layers with suspended sediment,” J. Geophy. Res., 91(C11), pp. 13045-13055.
14. Hara, T and C.C. Mei (1991) “Frequency downshift in narrowbanded surface waves under the influence of wind,” J. Fluid Mech., Vol. 230, pp. 429-477.
15. Homma, M. and K. Horikawa (1962) “Suspended sediment due to wave action,” Proc. 8th Int. Conf. Coastal Eng., ASCE, pp. 168-193.
16. Horikawa, K., Watanabe, A. and Katori, S. (1982) “Sediment Transport under Flow Condition,” Proc. 18th Int. Conf. Coastal Eng., ASCE., Vol. 2, pp. 1335-1352.
17. Hsu, T. W. and S. H. Ou (1994) “Mean sediment concentration and turbulent boundary layer of wave-induced sheet flow,” Journal of Hydraulic Research (SCI & EI), Vol. 32, No. 5, pp. 675-688.
18. Huang, N.E., S.R. Long and Z. Shen (1996) “The mechanism for frequency downshift in nonlinear wave evolution,” Adv. App. Mech. 32, pp. 59-111.
19. Ifuku, M. (1988) “Field observation and numerical calculation of suspended sediment concentration in the surf zone,” Coastal Eng. in Japan, Vol. 30, No. 2, pp.75-88.
20. Inman, D. L.(1957) “Wave generated ripples in nearshore sands,” Tech. Memo. No. 100, U.S. Army Corps of Engineers, B.E.B. 42 pp.
21. Jonsson, I. G. (1966) “Wave boundary layer and friction factors,” Proc. 10th Int. Conf. on Coastal Eng., ASCE, pp. 127-148.
22. Kajiura, K. (1968) “A model of bottom boundary layer in water waves,” Bull. Earthq. Res. Inst., Japan, Vol. 42, pp. 75-123.
23. Kawata, Y., H. Yoshioka and Y. Tsuchiya (1990) “The in situ measurements of sediment transport and bottom topography changes,” Proc. 22th Int. Conf. on Coastal Eng., ASCE, Vol. 3, pp. 2332-2345.
24. Kawata, Y., T. Shirai and Y. Tsuchiya (1992) “Field observation on sand ripples under rough sea state,” Proc. 23th Int. Conf. on Coastal Eng., ASCE, Vol. 2, pp. 2164-2175.
25. Komar, P. D. and D. L. Inman (1970) “Longshore sand transport on beaches,” J. Geophys. Res., Vol. 75, No. 30, pp. 5914-5927.
26. Koontz, W. A. and D. L. Inman (1967) “A multipurpose data acquisition system for instrumentation of the nearshore environment,” Tech. Memo. No. 21., U.S. Army Corps of Engrs., Coastal Eng. Res. Center.
27. Kos’yan, R., I. Podymov and N. Pykhov (1999) “Investigation of suspended sediment dynamics in the course of nearshore experiment in the Ob sea,” MEDCOAST 99 – EMECS 99 Joint Confernce, pp. 1675-1691.
28. Kraus, N. C. (1983) “Application of a shoreline prediction model,” Proc. Coastal structures ’83, ASCE, pp. 632-641.
29. Lin, P.C., H. T. Chou and J. T. Juang (2002) “The influence of energy grouping and undulating on sediment suspension in the surf zone,” J. Marine Science and Technology, Vol. 10, No. 2, pp. 83-91.
30. Longuet-Higgins, M.S. (1980) “Modulation of the amplitude of steep wind waves,” J. Fluid Mech., Vol. 99, part 4, pp. 705-713.
31. Luck, G. (1970) “Observation of sediment motion by under water-television,” Proc. 12th Int. Conf. Coastal Eng., ASCE, Vol. 1, pp. 687-708.
32. Lundgren, H (1972) “Turbulent currents in the presence of waves,” Proc. 13th Int. Conf. on Coastal Eng., ASCE, Vol. 1, pp. 623-634.
33. Melville, W.K. (1983) “Wave modulation and breakdown,” J. Fluid Mech., Vol. 128, pp. 489-506.
34. Munk, W.H. (1949) “Surf beats,” Eos Trans. AGU, Vol. 30, pp. 849-854.
35. Nakato, T., F.A. Locher, J.R. Glover and J.F. Kennedy (1977) “Wave entrainment of sediment from rippled beds,” J. Waterway, Port, Coastal and Ocean Eng., 103(1), pp. 83-99.
36. Nielsen, P. (1981) “Dynamics and geometry of wave-generated ripples,” J. Geophy. Res. 86, C7, pp 6467-6472.
37. Nielsen, P. (1983) “Analytical determination of near shore wave height due to refraction shoaling and friction,” Coastal Eng., Vol. 7, pp. 233-251.
38. Nielsen, P. (1986) “Suspended sediment concentration under waces,” Proc. 20th Int. Conf. Coastal Eng., ASCE, Vol. 1, pp. 23-31.
39. Nishi, R., M. Sato and K. Nakamura (1992) “Grain-size distribution of suspended sediments,” Proc. 23th Int. Conf. Coastal Eng., ASCE, Vol. 2, pp. 2293-2306.
40. Noda, H. (1967) “Sediment suspension by waves,” Proc. 14th Japanese Conf. on Coastal Eng., JSCE, pp. 306-314.
41. Okayasu, A., T. Matsumoto and Y. Suzuki (1996)” Laboratory experiments on generation of long waves in the surf zone,” Proc. 25th Int. Conf. Coastal Eng., ASCE, Vol. 2, Orlando, pp. 1321-1334.
42. Olmez, H.S. and J.H. Milgram (1995) “Nonlinear energy transfer to short gravity waves in the presence of long waves,” J. Fluid Mech., Vol. 289, pp. 199-226.
43. Ramamonjiarisoa, A. and E. Mollo-Christensen (1979) “Modulation Characteristics of sea surface waves,” J. Geophy. Res., Vol. 84, No. C12, pp. 7769-7775.
44. Raudkivi, A. J. (1988) “The roughness height under waves,” J. Hydr. Res., Vol. 26, No. 5, pp. 569-584.
45. Riedel, H. P., J. W. Kamphuis and A. Brebner (1972) “Measurement of bed shear stress under waves,” Proc. 13th Conf. Int. Conf. Coastal Eng., ASCE, Vol. 1, pp. 587-603.
46. Sato, S., K. Shimosako and A. Watanabe, (1987) “Measurements of oscillatory turbulent boundary layer flow ripples with a laser – Doppler velocimeter,” Coastal Eng. In Japan, Vol. 30, No. 1.
47. Shen, H. W., H. W. Fehlman and C. Mendoza (1990) “Bed form resistances in open channel flows,” J. Hydr. Eng., ASCE, Vol. 116, No. 6, pp. 799-815.
48. Shibayama, T. and K. Horikawa (1982) “Sediment transport and beach transformation,” Proc. 18th Int. Conf. Coastal Eng., ASCE, Vol. 2, pp. 1439-1458.
49. Sleath, J. F. A. (1982) “The suspension of sand by waves,” J. Hydr. Res., Vol. 19, pp. 439-452.
50. Sunamura, T., K. Bando, and K. Horikawa (1978) “An experimental study of sand transport mechanism and rate over asymmetrical sand ripples,” Proc. 25th Japanese Conf. on Coastal Eng., JSCE, pp. 250-254.
51. Trulsen, K. and K.B. Dysthe (1997) “Frequency downshift in three-dimensional wave trains in a deep basin,” J. Fluid Mech. Vol.352, pp. 359-373.
52. Tucker, M.J. (1950) “Surf beats: sea wave of 1 to 5 minute period,” Proc. Roy. Soc. London, Vol. A202, pp. 565-573.
53. Wright, L. D., R. T. Guza and A. D. Short (1982) “Dynamics of high energy dissipative surf zone,” Marine Geology, Vol. 45, pp. 41-61.
54. Yu, Z., H. D. Niemeyer and W. T. Bakker (1990) “Site investigation on sand concentration in the sheet flow layer,” Proc. 22th Int. Conf. Coastal Eng., ASCE, Vol. 3, pp 2360-2371.
55. 黃煌輝、賴泉基、張裕弦(1992) “波浪運動下沙漣流場之數值模擬,” 第十四屆海洋工程研討會論文集, pp. 575-589.
56. 歐善惠、許泰文(1992) “薄層流輸沙量之研究,” 第十四屆海洋工程研討會論文集, pp. 602-615.
57. 黃煌輝、黃國書、林玄忠(1995) “波浪作用下沙漣形成過程之流場運動特性,”第十七屆海洋工程研討會論文集, pp. 1379-1396.
58. 何良勝、曾相茂、邱永芳(1997) “台灣五個國際港海域海氣象特性之研究,”臺灣省政府交通處港灣技術研究所,基本研究報告(三)。
59. 曾相茂、張金機、簡仲璟(1997) “台中港港口擴建後海氣象調查研究,”臺灣省政府交通處港灣技術研究所,專利第149號(上冊)。
60. 江允智、林銘崇、丁肇隆(1998) “波浪作用下沙漣附近流場之研究,” 第二十屆海洋工程研討會論文集, pp. 475-482.
61. 邱永芳、吳基、林柏青(2001) “安平港海氣象觀測、防波堤水工模型試驗以及數值模擬研究—海氣象觀測,” 交通部運輸研究所,港灣技術研究中心,第二年期末報告。
62. 許泰文、廖建明、鄧秋霞、謝文斌(2002) “以緩坡方程式模擬不規則波之變形,” 第二十四屆海洋工程研討會論文集, pp. 70-77.