跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡逸聰
Yi-Tsung Chien
論文名稱: 一個以膚色為基礎之互補人臉偵測策略
A Complementary Strategy for Skin-color-based Face Detection
指導教授: 范國清
Kuo-Chin Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 95
中文關鍵詞: 可調式搜尋視窗以膚色為基礎之人臉特徵抽取膚色區域切割人臉偵測主分量分析
外文關鍵詞: adaptive search window, skin-color-based facial feature extraction, human skin color segmentation, face detection, principal component analysis
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人臉偵測常常作為人臉追蹤與辨識的前置作業,是一個複雜且困難的研究課題,其結果足以影響整個系統的效能。本論文提出一個以膚色為基礎之互補人臉偵測策略。首先在離線時統計人臉膚色的色彩資訊,並且使用一些形態學演算法加以描述。然後當系統從外接設備擷取到影像,便可以根據色彩資訊分離出可能有人臉存在的區域。接著使用兩種功能互補的策略來偵測人臉。第一種策略是新的人臉特徵抽取方法,利用膚色資訊來顯露出臉上的特徵圖樣,並且用一些幾何關係的限制加以過濾。第二種策略是使用可調式搜尋視窗框出可能的人臉候選,此視窗只需在固定解析度的影像上搜尋,可以自動的判斷移動方式並且調整視窗大小。最後是採用主分量分析來確認這兩種策略所找出來的人臉候選。
    我們的實驗證明本論文所提出的方法確實可行且可靠,在少許的條件限制下,對於環境採光變化、不同大小之人臉、人臉各種姿勢與表情、人臉有部分被遮蔽、及複雜背景等問題都可以有效的處理。此外,本論文還可以偵測出多個互相交疊的人臉,這是從前以膚色來偵測人臉的研究所無法克服的。


    Face detection is a complex and difficult problem. To serve as a prior step in face tracking and recognition, it is the most important process involved. In this thesis, two complementary strategies are presented to detect human faces in images based on skin color information. The proposed system consists of three major parts. The first part is to search for the potential face regions by off-line statistic information of skin color. The second part performs face detection by two strategies with complementary capabilities. The proposed first strategy can quickly extract facial features and choose some of them as the candidate of faces to be confirmed by some effective geometric constraints. In the second strategy, adaptive search window is utilized to locate face candidates. It can determine the moving way and adjust window''s size automatically to adapt face region. Lastly, the algorithm of principal component analysis is adopted to verify the candidates of face obtained by the previous processes.
    Experimental results reveal the efficiency and feasibility of our proposed approach. Under fewer constrains it can conquer difficulties, such as different lighting conditions, sizes of faces, variable orientations, facial expressions, partial occlusion, and complicated background. Moreover, we can also handle the case of occlusion of multiple faces.

    目錄...........................................................I 圖形目錄......................................................IV 表格目錄....................................................VIII 第一章 緒論...................................................1 1.1 研究動機...............................................1 1.2 相關研究...............................................2 1.3 系統概觀...............................................4 1.4 論文架構...............................................5 第二章 人臉膚色之色彩系統.....................................7 2.1 人臉膚色之統計與描述...................................7 2.1.1 人臉膚色之色彩空間...............................7 2.1.2 人臉膚色之統計...................................9 2.1.3 以形態學為基礎之人臉膚色描述....................11 2.2 膚色區域之轉換與切割..................................18 2.2.1 膚色區域之轉換..................................18 2.2.2 膚色區域之切割..................................20 第三章 兩種互補的人臉偵測策略................................23 3.1 以膚色為基礎之人臉特徵抽取............................24 3.1.1 在二元影像中之人臉特徵抽取......................24 3.1.2 人臉特徵的幾何結構之限制........................26 3.1.3 人臉候選之旋轉校正..............................31 3.2 可調式搜尋視窗........................................33 第四章 主分量分析............................................37 4.1 主分量分析之訓練階段..................................39 4.1.1 人臉訓練樣本之正規化............................39 4.1.2 K-L展開式.......................................41 4.2 主分量分析之確認階段..................................44 4.3 主分量分析之效能評估..................................45 4.3.1距離門檻值.......................................46 4.3.2 特徵向量之使用個數..............................48 4.3.3人臉訓練樣本之大小...............................50 4.3.4 人臉訓練樣本之數目..............................51 第五章 實驗結果與討論........................................52 5.1 實驗一:不同色彩空間對系統效能之影響..............53 5.2 實驗二:可處理之人臉偵測問題......................57 5.3 實驗三:系統安全性之分析..........................65 第六章 結論與未來之研究......................................66 6.1 結論..............................................66 6.2 未來之研究........................................68 參考文獻......................................................69 附錄A 主分量分析之人臉訓練樣本...............................71 附錄B 主分量分析之人臉測試影像...............................75 附錄C 主分量分析之非人臉測試影像.............................78

    [1] M. Turk and A. Pentland, “ Eigenfaces for recognition”,
    Journal of Cognitive Neuro-science, vol.3, no.1, pp.71-86,
    1991.
    [2] K. K. Sung and T. Poggio, “Example-based learning for view-
    based human face detection”, in Proc. Image Understanding
    Workshop, pp. 843-850, Monterey, Calif., Nov. 1994.
    [3] T. K. Leung, M. C. Burl, and P. Perona, “Finding faces in
    clustered scenes using random labeled graph matching”, in
    Proc. Computer Vision and Pattern Recognition, pp.637-644,
    Cambridge, Mass., Jun. 1995.
    [4] H. A. Rowley, S. Baluja, and T. Kanade, “Human face
    detection in visual scenes”, Tech. Rep. CMU-CS-95-158R,
    Carnegie Mellon University, 1995.
    [5] S. Y. Lee, Y. K. Ham, and R. H. Park, “Recognition of
    human front faces using knowledge-based feature extraction
    and neuro-fuzzy algorithm”, Pattern Recogntion, vol.29,
    no.11, pp.1863-1867, 1996.
    [6] P. Juell and R. Marsh, “A hierarchical neural network for
    human face detection”, Pattern Recognition, vol.29, no.5,
    pp.781-787, 1996.
    [7] K. Sobottka and I. Pitas, “Extraction of facial regions
    and features using color and shape information”, in Proc.
    13th International Conference on Pattern Recognition,
    pp.421-425, Vienna, Austria, Aug. 1996.
    [8] H. Wu, Q. Chen, and M. Yachida, “A fuzzy-theory-based face
    detector”, in Proc. 13th International Conference on
    Pattern Recognition, pp.406-410, Vienna, Austria, Aug. 1996.
    [9] S. H. Jeng, H. Y. Mark Liao, C. C. Han, M. Y. Chern, and Y.
    T. Liu, “An efficient approach for facial feature
    detection using geometrical face model”, to appear in
    Pattern Recognition, 1997.
    [10]C. C. Han, H. Y. Mark Liao, G. J. Yu, and L. H. Chen,
    “Fast face detection via morphology-based pre-processing”,
    in Proc. 9th International Conference on Image Analysis and
    Processing, Florence, Italy, September 17-19, 1997, Lecture
    Notes in Computer Science, vol. 1311, pp.469-476.
    [11]C. H. Lin and K. C. Fan, “Triangle-based approach to the
    detection of human faces”, accepted and to appear in
    Pattern Recognition, vol.34, no.6, June 2001.
    [12]I. S. Hsieh and K. C. Fan, “A statistic approach to the
    detection of human faces in color nature scene”, submitted
    to Pattern Recognition.
    [13]M. Kirby and L. Sirovich, “Application of the Karhunen-
    Loe''ve procedure for the characterization of human faces”,
    IEEE Transactions on Pattern Analysis & Machine
    Intelligence, vol.12, pp.103-108, 1990.

    QR CODE
    :::