| 研究生: |
廖宜聖 Yi-Sheng Liao |
|---|---|
| 論文名稱: |
冷媒R-410A在板式熱交換器內流道間溫度分佈觀察實驗 |
| 指導教授: | 楊建裕 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 兩相冷媒 、板式熱交換器 、側面 、入口集管擋板 、溫度分佈 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究接續前人利用透明壓克力製的板式熱交換器模型,觀察水與空氣模擬兩相流體在蒸發器的板式熱交換器內流動分佈,因為水的慣性力遠大於空氣,所以空氣會集中在靠近入出口的流道、水集中在遠離入出口的流道。前人研究愈改善這種流動分佈不均的狀況,在熱交換器的入口集管中每數個流道的間距置入擋板,也有擋不同的集管直徑比例、擋集管上半部與擋集管下半部,其中結果比較好的是每5個與每10個流道置入一擋板擋集管上半部的50%。流入熱交換器的環狀流會因為撞到集管上半部的擋板後,在擋板後方產生逆時針方向的擾動使得兩相流體有很好的混合,讓整體流道間的分佈獲得改善。
於實際板式熱交換器中實驗,發現氣態冷媒集中在遠離入出口的流道、飽和冷媒集中在靠近入出口的流道,後續探討因為水與空氣的模擬為絕熱過程、冷媒為熱傳過程;在流道中置入擋板能夠使集管的飽和冷媒被導入流道內,繼觀察水與空氣的模擬與改善方法後,發現以上兩種結果於實際熱交換器使用時的差異。
This study continues the plate heat exchanger model which is made of Acrylic. We can observe distribution of water-air in the plate heat exchanger. Because of water’s inertial force is larger than air’s, air distributes several channels which are close to entrance and water distributes channels which are far from entrance. In past studies, there are some ways to improve the distribution. They insert some baffles in the header, different position and percent of diameter of header. Inserting a 50%-top-of-header-baffle per 5 channels and per 10 channels have better distribution.
This study is going to do the experiment to test the distribution of R-410A in plate heat exchanger. We will find out whether the baffles can make the distribution better or not
[1] 台吉熱能企業有限公司,2016,產品介紹,殼管式熱交換器 http://www.tc-heat.com.tw/product_view.php?id=27
[2] 高力熱處裡工業股份有限公司,2015,電子型錄 http://www.kaori-bphe.com/tw/products/page/E_CATALOG
[3] 朱彥丞,2012,板式熱交換器內部之兩相分佈模擬與流動分佈不均性分析,國立中央大學機械工程研究所碩士論文,中壢。
[4] 曾彥碩,2014,不同集管形式多流道熱交換器流動分佈研究,國立中央大學能源工程研究所碩士論文,中壢。
[5] 江耀宏,2015,使用不同擋板集管之多通道熱交換器流動分佈觀察,國立中央大學機械工程研究所碩士論文,中壢。
[6] 王啟川,2007,熱交換器設計,五南圖書出版有限公司,台北市。
[7] 孟繁宇,2011,水-空氣在板式熱交換器內的流動觀察,國立中央大學能源工程研究所碩士論文,中壢。
[8] Dario, E.R., Tadrist, L., and Passos, J.C., 2013, “Review on two-phase flow distribution in parallel channels with macro and micro hydraulic diameters: Main results, analyses, trends,” Applied Thermal Engineering, Vol. 59, pp. 316-335.
[9] Lee, J.K. and Lee, S.Y., 2004, “Distribution of two-phase annular flow at header-channels junctions,” Experimental Thermal and Fluid Science, Vol. 28, pp. 217-222.
[10] Lee, J.K., 2009, “Two-phase flow behavior inside a header connected to multiple parallel channels,” Experimental Thermal and Fluid Science, Vol. 33, pp. 195-202.
[11] Vist, S. and Pettersen, J., 2004, “Two-phase flow distribution in compact heat exchanger manifolds,” Experimental Thermal and Fluid Science, Vol. 28, pp. 209-215.
[12] Kim, N.H. and Han, S.P., 2008, “Distribution of air-water annular flow in a110header of a parallel flow heat exchanger,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 977-992.
[13] Kim, N.H., Lee, E. J. and Byun, H. W., 2013, “Improvement of two-phase refrigerant distribution in a parallel flow minichannel heat exchanger using insertion devices”, International Journal of Refrigeration, Vol. 59, pp. 116-130.
[14] Kim, N.H. and Sin, T.R., 2006, ”Two-phase flow distribution of air-water annular flow in a parallel flow heat exchanger,” International Journal of Multiphase Flow, Vol. 32, pp. 1340-1353.
[15] 翁嘉鴻,2002,水對水板式熱交換器性能測試分析,國立中央大學機械工程研究所碩士論文,中壢。
[16] Thermal-Fluid Central, 2012, Encyclopedia, Two-Phase_Flow_Patterns_in_Horizontal_Tubes, http://www.thermalfluidscentral.org/encyclopedia/index.php/Two-Phase_Flow_Patterns_in_Horizontal_Tubes