| 研究生: |
陳守恒 Shou-Heng Chen |
|---|---|
| 論文名稱: |
NURBS曲面編修與平滑化技術 NURBS Shape Modification and Fairing |
| 指導教授: |
賴景義
Jiing-Yih Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 曲面編修 、拘束最佳化 、曲面平滑 、自由曲面造型 、NURBS |
| 外文關鍵詞: | Constrained Optimization, NURBS, Free-Form Deformation, Shape Modification, Shape Fairing |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在整個CAD模型的建構過程當中,自由曲面造型所佔的比例越來越重,同時,為了因應各種原因,去要求自由曲面的造型必需能夠局部的自由加以變更,使其符合各式設計需求,為目前熱門的討論主題。本論文的目的在於提出一套曲面自由編修(Free-form deformation)的演算法,並且能夠達到設計變更的目的,另外也探討曲面平滑(Fairing)的主題,以求在編修的同時,能夠得到較佳的曲面品質。
首先基於NURBS的數學模型來作分析,將其在曲面變更時所求出的各式解之限制條件以及改善方法作一討論。接著配合最佳解演算法來做為曲面變更的核心,最後在以拘束條件的加入方法作為最後的步驟。經由以上所提出的演算法,將能夠提供一個曲面造型編修技術的基礎流程。
In CAD modeling Systems, the proportion of Free-Form surface is heavier and heavier. Meanwhile, in order to solve various kinds of demands of designing, we have to change ordinary CAD model. The purpose of this research lies in proposing an algorithm and procedure of NURBS shape deformation, via various combination of constrain condition to control shape deformation. At first, we do analysis of NURBS mathematics model and construct various types of limiting conditions. Then three kinds of methods be proposed, for improve limiting conditions before shape operation. When we start to determine shape parameter of modification, this paper presents an optimization algorithm method. It is the core of whole procedure. Second step, we can not only use basic shape modification function but also combine the constrained condition. At the end step, further fairing methods were used to improve shape quality in shape modification process.Based on this discussion, provide a integrated procedure for shape modification method by means of which one can control shape arbitrarily.
[1] L. Piegl, “Modifying the Shape or Rational B-spline. Part 1 :Curves”, Computer Aided Design, 21, 509-18, 1989
[2] L. Piegl, “Modifying the Shape or Rational B-spline. Part 1 :Surfaces”, Computer Aided Design, 21, 538-46, 1989
[3] L. Piegl and W. Tiller, “The NURBS Book”, Springer, Berlin, 1995
[4] C. K. Au and M. M. F. Yuen, “Unified Approach to NURBS Curve Shape Modification”, Computer Aided Design, Vol. 27, No. 2, pp. 85-93, Jan. 1995
[5] J. Sànchez-Reyes, “A Simple Technique for NURBS Shape Modification”, IEEE Computer Graphics and Applications, 17-1, 52-59, 1997
[6] C. Celniker and W. Welch, “Linear Constrains for Deformable B-spline Surfaces”, Proceedings of the Symposium on Interactive 3D Graphics, vol. 25(2), p.165-70, Computer Graphs, Boston, 1992
[7] J. M. Zheng, K. W. Chan and I. Gibson, A New Approach for Direct Manipulation of Free-form Curve”, Computer Graphics Forum, 17-3, 328-34, 1998
[8] S. M. Hu, T. F. Li, T. Ju and X. Zhu, “Modifying the Shape of NURBS Surfaces with Geometric Constraints”, Computer Aided Design 33, 903-912, 2001
[9] M. Hoffmann and I. Juhasz, “The Effect of Knot Modifications on the Shape of B-spline Curves”, Geometry Graphics 5, 111-119, 2001
[10] M. Hoffmann and I. Juhasz, “Shape Control of Cubic B-spline and NURBS Curves by Knot Modifications”, Information Visualization, Proceedings. Fifth International Conference, No. 25-27, 63-68, July 2001
[11] M. Hoffmann and I. Juhasz, “Geometric Aspects of Knot Modification of B-spline Surfaces”, Journal for Geometry and Graphics, Vol. 6, No. 2, 114-149, 2001
[12] I. Juhasz, “Weight-based Shape Modification of NURBS Curves”, Computer Aided Geometric Design 16 , 377–383, 1999
[13] Y.vChen, K. P. Beier and D. Papageorgiou, “Direct Highlight Line Modification on NURBS Surfaces”, Computer Aided Geometry Design, 14(6), 583–601, 1997
[14] C. Zhang and F. Cheng, “Removing Local Irregularities of NURBS Surfaces by Modifying Highlight Lines”, Computer Aided Design, 30(12), 923–30, 1998
[15] J. H. Yong, F. Chenga, Y. Chenb, P. Stewartb and K. T. Miurac, “Dynamic Highlight Line Generation for Locally Ddeforming NURBS Surfaces”, Computer-Aided Design, No.35, 881–892, 2003
[16] S. Hahmann, “Shape Improvement of Surfaces”, Journal of Computing, 1998
[17] J. F. Poliakoff, “An improved Algorithm for Automatic Fairing of Non-uniform Parametric Cubic Splines”, Computer Aided Design,
Vol.28, No.1, pp59-66, 1996
[18] G. Greiner, P. Launent, A. Le Méhauté, L. Schumaker, “Surface Construction Based on Variational principles”, Wavelets, Images and
Surface Fitting, A. K. Peters, Wellesley, MA.
[19] M. Kimura, T. Saito and M. Shinya, “Surface Deformation with Differential Geometric Structures”, Computer Aided Geometric Design,
No.13, pp.243-256, 1996
[20] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,“Numerical Recipes in C: The Art of Scientific Computing”, Cambridge, New York, 1992
[21] 賴景義, 翁文德, “逆向工程理論與應用”, 全華科技圖書股份有限公司, 台北, 2004
[22] J. A. Kjellander, “Smoothing of Bicubic Parametric Surfaces”,
Computer Aided Design, No.15, pp289-293, 1983