| 研究生: |
翁崎 Ongki Budi Anggriawan |
|---|---|
| 論文名稱: |
On the corrosion of Zr48Cu36Al8Ag8 and (Zr48Cu36Al8Ag8)Si0.25 BMGs containing various amounts of crystals in 0.1 M NaCl solution |
| 指導教授: |
林景崎
Lin Jing-Chie |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 金屬玻璃 、Zr-Cu-Al-Ag 、Zr-Cu-Al-Ag-Si 、腐蝕 、NaCl |
| 外文關鍵詞: | Metallic glasses, Zr-Cu-Al-Ag, Zr-Cu-Al-Ag-Si, corrosion, NaCl |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以電化學技術來研究結晶程度不同(0%, 25%, 50% 和100%)的Zr48Cu36Al8Ag8和(Zr48Cu36Al8Ag8)Si0.25金屬玻璃在0.1M 氯化鈉水溶液中的腐蝕行為。金屬玻璃Zr48Cu36Al8Ag8 與 (Zr48Cu36Al8Ag8)Si0.25中的結晶化程度,分別以471℃和480℃持溫的時間長短來控制。電化學腐蝕研究方法包括開路電位(OCP)、直流電極化阻抗(PR)、塔弗曲線(TP)、循環陽極動態極化(CAPD)、電化學組抗頻譜(EIS)等測量,以估計試片之腐蝕速率。
由電化學研究結果歸納出: Zr48Cu36Al8Ag8及(Zr48Cu36Al8Ag8)Si0.25的腐蝕速率隨著所含結晶百分比由0%增高至25%而明顯下降,然而隨著結晶百分比由25%增至50, 70甚至100%時,腐蝕速率則隨之增大。與Zr48Cu36Al8Ag8相比,添加0.25%Si的(Zr48Cu36Al8Ag8)Si0.25耐蝕性較佳,尤其以含25%結晶百分比的 (Zr48Cu36Al8Ag8)Si0.25試片抗蝕性最佳(其腐蝕電位最高;腐蝕速率最低),之所以具有如此優異的抗蝕性歸因於熱處理時試片內部應變能的釋放。反之,當試片內結晶百分比由25 %增至50 %以上時,結晶程度提升,晶界數量增加,晶界處成為主要腐蝕區域,進而加速了腐蝕速率。試片的密度測定,顯示(Zr48Cu36Al8Ag8)Si0.25之密度高於Zr48Cu36Al8Ag8,推測填加Si原子於Zr48Cu36Al8Ag8金屬玻璃時,將會填入玻璃結構的空隙位置,增高此金屬玻璃原子之堆積密度,因而在相同結晶百分比下,(Zr48Cu36Al8Ag8)Si0.25的結構比Zr48Cu36Al8Ag8緊密,較具抗蝕性。
The corrosion behavior of Zr48Cu36Al8Ag8 and (Zr48Cu36Al8Ag8)Si0.25 BMGs containing various amounts (0, 11, 25, 50, 70 and 100 %) of crystalline forms in NaCl 0.1 M solution was investigated by electrochemical techniques in this work. The percentage of the crystals in BMGs were adjusted by annealing at 471 oC for Zr48Cu36Al8Ag8 and at 480 oC for (Zr48Cu36Al8Ag8)Si0.25 for changing durations. The open circuit potential (OCP), direct-current polarization resistance (PR), Tafel plot (TP), cyclic anodic potentiodynamic polarization (CAPD), and electrochemical impedance spectroscopy (EIS) where investigated to estimate the corrosion rate of all the specimens.
Resulting from electrochemical studies on both Zr48Cu36Al8Ag8 and (Zr48Cu36Al8Ag8)Si0.25, we concluded that the corrosion rate decreased with increasing the percentage of crystal form from 0 to 25%, and it increased with increasing the crystal percentages in the range from 50% to 100%. The corrosion rate was lower for (Zr48Cu36Al8Ag8)Si0.25 than for Zr48Cu36Al8Ag8. The specimen containing 25% crystal in the (Zr48Cu36Al8Ag8)Si0.25 system revealed the highest Ecorr with the lowest corrosion rate (the lowest corrosion current density) than that in the Zr48Cu36Al8Ag8. Greater corrosion resistance for the annealed specimens containing 25% crystal may be ascribed to relaxation of the strain energy and decreased free volume that resulted from annealing in the preparation of BMGs. On the contrary, an increase of corrosion rate with increasing the crystal content from 50 to 70 and 100 % may be contributed to an increase of grain boundary area resultant from higher percentage of crystals. Determination of the gravimetrical density revealed that it was greater for (Zr48Cu36Al8Ag8)Si0.25 than Zr48Cu36Al8Ag8. This fact implied that the addition of silicon inclined to fill up the interstitial sites in Zr48Cu36Al8Ag8, hence resulted in an increase of atomic packing density in the BMGs. As a result, the more compact (Zr48Cu36Al8Ag8)Si0.25 structure displayed better corrosion resistance than Zr48Cu36Al8Ag8 at the same percentages of crystals.
[1] I. Kalay, “Devitrification kinetics and phase selection mechanisms in Cu-Zr metallic glasses”, Materials Science and Engineering, Ames, Iowa, (2010).
[2] R. Babilas, R. Nowosielski, “Iron - based bulk amorphous alloys”, Archives of Materials Science and Engineering, vol. 44, pp. 5–27, (2010).
[3] A. Inoue, A. Makino, T. Mizushima, “Ferromagnetic bulk glassy alloys”, Journal of Magnetism and Magnetic Materials, vol. 215-216, pp. 246-252, (2000).
[4] W. H. Wang, C. Dong, C. H. Shek, “Bulk metallic glasses”, Materials Science and Engineering, vol. 44, pp. 45-89, (2004).
[5] W. Basu and S. Ranganathan, “Bulk metallic glasses: A new class of engineering materials”, Sadhana, vol. 28, pp. 783–798, (2003).
[6] T. R. Anantharaman, “Metallic glasses: Production, properties and applications”, Trans. Tech. Publications, (1984).
[7] V. Schroeder, C. J. Gilbert and R. O. Ritchie, “Comparison of the corrosion behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with its crystallized form”, Materials Science and Mineral Engineering, vol. 38, pp. 1481–1485, (1998).
[8] X. P. Nie, X. M. Xu, Q. K. Jiang, L. Y. Chen, Y. Xu, Y. Z. Fang, G. Q. Xie, M. F. Luo, F. M. Wu, X. D. Wang, Q. P. Cao, J. Z. Jiang, “Effect of microalloying of Nb on corrosion resistance and thermal stability of ZrCu-based bulk betallic glasses”, Journal of Non-Crystalline Solids, vol. 355, pp. 203–207, (2009).
[9] N. Hua, S. Pang, Y. Li, J. Wang, R. Li, K. Georgarakis, A. R. Yavari, G. Vaughan, T. Zhang, “Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability”, Journal of Materials Research, vol.26, pp. 539-546, (2011).
[10] A. inoue, T. Zhang, T. Masumoto, “Zr-Al-Ni amorphous alloy with high glass transition temperature and significant supercooled liquid region”, Mater. Trans. Japan Institute metalurgi, vol. 31, pp. 177-183, (1990).
[11] D. Zander, U. Köster, “Corrosion of amorphous and nanocrystalline Zr-based alloys”, Materials Science and Engineering, vol. A 375–377, pp. 53–59, (2004).
[12] C. G. Tan, W. J. Jiang, X. Q. Wu, X. F. Wang, J. G. Lin, “Effect of crystallization on corrosion resistance of Cu52.5Ti30Zrll.5Ni6 bulk amorphous alloy”, Material and Photoelectronic Physics, vol. 17, pp. 751-754, (2007).
[13] J. Paillier, C. Mickel, P. F. Gostin, A. Gebert, “Characterization of corrosion phenomena of Zr–Ti–Cu–Al–Ni metallic glass by SEM and TEM”, Materials Characterization, vol. 61, pp. 1000-1008, (2010).
[14] “The APV Corrosion Handbook”, Issued: 08/2008 1035-01-08-2008-US, APV, An SPX Brand, Getzville, New York, 2008.
[15] S. V. Madge and A. L. Greer, “Effect of Ag addition on the glass-forming ability and thermal stability of Mg–Cu–Y alloys”, Materials Science and Engineering, vol. A 375–377, pp. 759–762, (2004).
[16] N. Chen, D. V. Louzguine-Luzgi, G.Q. Xie, T. Wada, and A. Inoue, “Influence of minor Si addition on the glass-forming ability and mechanical properties of Pd40Ni40P20 alloy”, Acta Materialia, vol. 57, pp. 2775–2780, (2009).
[17] R. Pierre, “Handbook of Corrosion Engineering”, McGraw-Hill Companies, Inc., New York, (1999).
[18] Q. Luo, B. Zhang, D. Q. Zhao, R. J. Wang, M. X. Pan, and W. H. Wang, “Aging and stability of cerium-based bulk metallic glass”, Applied Physics Letters, vol. 88, pp. 151915-1-3, (2006).
[19] A. Choubey, B. Basu and R. Balasubramaniam, “Electrochemical behavior of Ti-based alloys in simulated human body fluid environment”, Trends Biomater. Artif. Organs, vol 18, (2005).
[20] H. R. A. Bidhendi, M. Pouranvari, “Corrosion study of metallic biomaterials in simulated body fluid”, Association of Metallurgical Engineers of Serbia AMES, Metalurgija-mjom, vol. 17, pp. 13-22, (2011).
[21] M. Hansen, “Production and Characterization of a Zr-based Bulk Metallic Glass”, Chemical Engineering and Biotechnology, Norwegian University of Science and Technology (2013).
[22] W. Klement, R. H. Willens, P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature vol. 187, pp. 869 - 870, (1960).
[23] H. Libermann and C. Graham, “Production Of Amorphous Alloy Ribbons And Effects Of Apparatus Parameters On Ribbon Dimensions”. IEEE Transactions on Magnetics, vol. 12, pp. 921-923, (1976).
[24] A. Inoue, S. Sobu, D. V. Louzguine, H. M. Kimura, K. Sasamori, “Ultrahigh strength Al-based amorphous alloys containing Sc”, Journal of Materials Research, vol. 19, pp. 1539-1543, (2004).
[25] A. Inoue, T. Zhang, T. Masumoto, “Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region”, Mater. Trans., vol. 30, pp. 965-972 (1989).
[26] M. Naka, K. Hashimoto, T. Masumoto, “High corrosion resistance of chromium-bearing amorphous iron alloy in neutral and acidic solution containing chloride”, The Research Institute for Iron, Steel, and Other Metals, vol. 32, pp. 146–152, (1975).
[27] A. Inoue, D. Kawase, A. P. Tsai, T, Zhang and T. Masumoto, “Stability and transformation to crystalline phases of amorphous Zr-A1-Cu alloys with significant supercooled liquid region”, Mater. Sci. Eng., vol. A 178, pp. 255-263, (1994).
[28] L.Q. Xing, P. Ochin, and J. Bigot, “Effects of Al on the glass-forming ability of Zr-Cu based alloys”, Journal of Non-Crystalline Solids, vol. 205-207, pp. 637-640, (1996).
[29] W. Zhang, F. Jia, Q. Zhang, A. Inoue, “Effects of additional Ag on the thermal stability and glass-forming ability of Cu–Zr binary glassy alloys”, Materials Science and Engineering, vol. A 459, pp. 330–336, (2007).
[30] W. Zhang, Q. Zhang, and A. Inoue, “Fabrication of Cu–Zr–Ag–Al glassy alloy samples with a diameter of 20 mm by water quenching”, Materials Research Society, vol. 23, pp. 1452- 1456, (2008).
[31] H. Choi, R. Busch, and W. L. Johnson, “The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites”, Journal of applied physics, vol. 83, no. 12, pp. 7993-7997, (1998).
[32] N. Nishiyama and A. Inoue, “Direct comparasion between critical cooling rate and some quantitative parameters for evaluation of glass-forming ability in Pd-cu-Ni-P alloys”, Material Transaction, vol 43, pp. 1913-1917, (2002).
[33] J. S. C. Jang, S. R. Jian, C. F. Chang, L. J. Chang, Y. C. Huang, T. H. Li, J. C. Huang, C. T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, vol. 478, pp. 215–219, (2009).
[34] Z. P. Lu, C. T. Liu, “A new approach to understanding and measuring glass formation in bulk amorphous materials”, Intermetallics, vol.12, pp.1035, (2004).
[35] A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element”, Materials Transactions, vol. 46, no. 12, pp. 2817-2829, (2005).
[36] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, pp. 866-875, (1995).
[37] A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”, Materials Science and Engineering, vol.A 304-306, pp. 1-10, (2001).
[38] A. Inoue, B. L. Shen, C. T. Chang, “Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa”, Intermetallics, vol. 14, pp. 936-944, (2006).
[39] R. Rao, “On glass formation in metal–metal systems”, Z Metallk, vol. 71, pp. 172–177, (1980).
[40] T. Egami, “Nano-glass mechanism of bulk metallic glass formation”, Mater. Trans. Jpn. Inst. Met., vol. 43, pp. 510–517, (2002).
[41] K. Mondal, B. S. Murty, “On the parameters to assess the glass forming ability of liquids, Journal of Non-Crystalline Solids”, vol. 351, pp. 1366–1371, (2005).
[42] A. Hruby, “Evaluation of glass-forming tendency by means of DTA”, Czechoslovak Journal of Physics, vol. B22, pp. 1187-1193, (1972).
[43] M. Saad, M. Poulain, “Glass forming ability criterion”, Materials Science Forum, vol. 19-20, pp. 11-18, (1987).
[44] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh, “Glass forming ability of bulk glass forming alloys”, Scripta Materialia, vol. 36, pp. 783-787, (1997).
[45] G. J. Fan, H. Choo, P. K. Liaw, “A new criterion for the glass-forming ability of liquids”, Journal of Non-Crystalline Solids, vol. 353, pp. 102-107, (2007).
[46] Z. P. Lu, Y. Li, S. C. Ng, “Reduced glass transition temperature and glass forming ability of bulk glass forming alloys”, Journal of Non-Crystalline Solids, vol. 270, pp. 103-114, (2000).
[47] X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, vol. 101, pp. 0861081-3, (2007).
[48] B. Idzikowski, Z. Sniadecki and B. Mielniczuk, “Crystallization of morphous Y50Cu42Al8 alloy”, Physics of Magnetism, vol. 115, pp. 147-149, (2009).
[49] N. V. Steenberge, “Study of structural changes in Zr-based bulk metallic glasses upon annealing and deformation treatments”, Universitat Autònoma de Barcelona, Ballaterra, (2008).
[50] C. H. Huang, J. C. Huang, J. B. L, J. S. C. Jang, “Simulated body fluid electrochemical response of Zr-based metallic glasses with different degrees of crystallization”, Materials Science and Engineering, vol. C33, pp. 4183–4187, (2013).
[51] S. Mahdavi, V. Madahi, M. Samedani and H. R. Rezaie, “Investigation of the percentage crystallization in glass ceramics using an image analyzer method”, Journal of Ceramic Processing Research. vol. 12, pp. 34–37, (2011).
[52] M. Dittmer, C. Ritzberger, M. Schweiger, V. Rheinberger, M. Wörle, W. Höland, “Phase and microstructure formation and their influence on the strength of two types of glass-ceramics”, Journal of Non-Crystalline Solids, vol. 384, pp. 55–60, (2014).
[53] S. González, E. Pellicer, S. Suriñach, M.D. Baró, J. Sort, “Mechanical and corrosion behavior of as-cast and annealed Zr60Cu20Al10Fe5Ti5 bulk metallic glass”, Intermetallics, vol. 28, pp. 149-155, (2012).
[54] D. Turnbull, “Under what conditions can a glass be formed?”, Contemporary Physics, vol. 10, pp. 473-488, (1969).
[55] C. L. Qin, W. Zhang, H. Kimura, K. Asami, and A. Inoue, “Corrosion behavior and surface characteristics of Ni-based and Cu-based metallic glasses”, Meeting 214th, Electrochemical Society, pp. 1609, (2008).
[56] M. K. Tam and C. H. Shek, “Crystallization and corrosion resistance of Cu50Zr45Al5 bulk amorphous alloy”, Materials Chemistry and Physics, vol. 100, pp. 34–37, (2006).
[57] X. Y. Lu, L. Huang, S. Pang, T. Zhang, “Formation and biocorrosion behavior of Zr-Al-Co-Nb bulk metallic glasses”, Materials Science, vol. 57, pp. 1723-1727, (2012).
[58] W. Y. Hung, “Corrosion behavior of Zr48Cu36Al8Ag8Six (x=0.00~1.00) bulk metallic glasses (BMGs) in Sodium chloride and Sulfuric acid solutions”, Mechanical engineering, National Central University, (2013).
[59] J. Kaifeng, F. L. Jörg, “Amorphous alloys on the base of Zr and their use”, Paten, Publication Number EP1632584Al, (2006).
[60] E. C. Richard, “Ceramography: preparation and analysis of ceramic microstructures”, The American Ceramic Society, ASM International, (2002).
[61] I. Dirk, “Structure-property correlations in glassy Mg-Cu-Y, and corrosion resistance of novel Mg-Al-Ga glasses”, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 17941, (2008).
[62] A. L. Greer, “Confusion By Design”, Materials Science, Nature, vol. 366, pp. 303–304, (1993).
[63] Q.S. Zhang, W. Zhang, G.Q. Xie and A. Inoue, “Eutectic crystallization behavior of new Zr48Cu36Al8Ag8 alloy with high glass-forming ability”, Journal of Physics: Conference Series, vol. 144, pp. 1-4, (2009).
[64] Y. Lu, Y. Huang, J. Shen, “The electronic structure origin for ultrahigh glass-forming ability of the FeCoCrMoCBY alloy system”, Journal of Applied Physics, vol. 110, pp. 33-37 (2011).
[65] W. Kajzer, A. Krauze, W. Walke, J. Marciniak, “Corrosion behavior of AISI 316L steel in artificial body fluids”, Journal of Achievements in Materials and Manufacturing Engineering, vol. 31, Issue 2, (2008).
[66] S. john mary, S. rajendran, “Corrosion behavior of metals in artificial blood plasma in presence of glucose”, Zaštita Materijala, vol.53, (2012).
[67] A. D. Hulbert, “Periodic Table”, Oakland Schools Chemistry Resource Unit.
[68] Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh, and H. C. Shih, “Microstructure and electrochemical properties of high entropy alloys a comparison with type-304 stainless steel”, Corrosion Science, vol. 47, pp. 2257–2279, (2005).
[69] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta mater, vol. 48, pp. 279-306, (2000).