跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林瑞益
Jui-yi Lin
論文名稱: 寬頻與低損耗之堆疊對稱偏移金氧半導體平衡至不平衡轉換器應用於被動型混波器之研究
Broadband and Low-loss Symmetric Offset Stack CMOS Balun for Passive Mixer Designs
指導教授: 邱煥凱
Hwann-kaeo Chiou
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 英文
論文頁數: 105
中文關鍵詞: 互補式金氧半導體馬遜巴倫混頻器
外文關鍵詞: balun, CMOS, mixer
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的是設計、分析和實現一個寬頻、低損耗在 0.18 微米互補式金氧半導體製程下的馬遜巴倫,並且証實其可行性。然後我們將這巴倫應用在五個標準互補式金氧半導體製程下的混頻器上。這巴倫是利用一個對稱偏移堆疊多層的結構來實現的。為了得到最小的插入損耗及最大的頻寬,我們提供了一個適當選擇兩條耦合線寬度和耦合線之間偏移寬度的設計準則來達到此目的。對此巴倫所提出的設計步驟可借由電路的實作來相互驗證。量測的結果顯示和理論分析有很好的一致性。比較近年來文獻中所提出不同架構的馬遜巴倫,我們所提出的馬遜巴倫更具有寬頻及低插入損耗等特性。測量兩個單、雙巴倫的頻寬超過 110% 和 90%,並且在 38 GHz 的頻率下其插入損失小於 4.4 dB 和 7.4 dB。並且這兩個巴倫的晶片面積同為 0.07 平方毫米。
    我們使用 0.13 微米和 0.18 微米互補式金氧半導體的製程來實現三個被動式電阻混頻器及兩個被動式二極體混頻器。這些使用堆疊式巴倫的混頻器,呈現出寬頻、小面積的特性。這些電阻混頻器展現出超過 14 到 45 GHz (105%),18 到 54 GHz (100%) 和 28 到 50 GHz (56%)的頻寬。一個 14 到 45 GHz 單平衡電阻混頻器顯現出在7 dBm 的本地振盪器功率下轉換損耗低於 12 dB。這混頻器的本地振盪端到射頻端、本地振盪端到中頻端的隔離度均高於 30 dB。此混頻器晶片面積為 0.53 平方毫米。一個星形混頻器在 18 到 54 GHz 的頻段中,達到低於 12 dB 的轉換損耗,並且在本地震盪頻率從 10 到 60 GHz 下,本地振盪端到射頻端、本地振盪端到中頻端和射頻端到中頻端的隔離度均高於 35 dB。此混頻器的晶片面積為 0.6 平方毫米。ㄧ個次諧波電阻混頻器的轉換損耗從 28 到 50 GHz 的頻率下低於 11 dB。此混頻器的隔離度高於 31 dB且晶片面積為 0.61 平方毫米。兩個二極體混頻器展現出超過 20 到 60 GHz (100%) 和 14 到 52 GHz (115%)的頻寬。單平衡二極體混頻器展現出轉換損耗低於 15 dB 且晶片面積為 0.24 平方毫米。一個星形二極體混頻器展現出在 14 到 52 GHz 的頻寬下轉換損耗低於 15 dB。此混頻器的晶片面積為 0.4 平方毫米。


    The purpose of this dissertation is to design, analyze and implement broadband and low-loss Marchand balun in 0.18 um CMOS process to verify the feasibility, and then the balun is used in five passive mixers in standard CMOS technology. The topology of this Marchand balun is utilized a symmetrical offset stack coupled line structure. To achieve a minimum insertion loss and a maximum bandwidth, the design formulas are derived by proper selected the width of coupled lines and the offset width between two coupled lines. The design procedure for the balun is verified by practical implementation. The measured results are agreed with the theoretical analysis. Compare with the literature survey of the recently reported Marchand baluns; the proposed Marchand balun shows the better bandwidth and insertion loss performance. Both single and dual baluns achieve the measured bandwidths of over 110% and 90%, and insertion losses of less than 4.4 dB and 7.4 dB at 38 GHz. These two baluns occupied chip sizes of 0.07 mm2.
    Three balanced resistive mixers and two balanced diode mixers are further proposed and implemented in tsmcTM 0.13-um and 0.18-um CMOS processes. These mixers utilized a stack balun feature a wide bandwidth performance with very compact size. The balanced resistive mixers exhibit wide bandwidths over 14-45 GHz (105%), 18-54 GHz (100%) and 28-50 GHz (56%). The 14-45 GHz SBRM achieves a conversion loss of better than 12 dB at 7 dBm of local oscillator (LO) power. The LO to RF and LO to IF isolations are better than 30 dB. The chip area is 0.53 mm2. The star mixer achieves a conversion loss of better than 12 dB from 18 to 54 GHz, and LO to RF, LO to IF and RF to IF isolations better than 35 dB at LO frequencies spanning 10 to 60 GHz. The chip area is 0.6 mm2. The SHPRM has a conversion loss of better than 11 dB from 28 to 50 GHz. The isolations are better than 31 dB and occupy a chip area of 0.61 mm2. Two balanced diode mixers exhibit bandwidths over 20-60 GHz (100%) and 14-52 GHz (115%). The single balanced diode mixer achieves conversion loss lower than 15 dB with compact chip size of 0.24 mm2. The star diode mixer has conversion loss of lower than 15 dB 14 to 52 GHz. The chip size is only 0.4 mm2.

    Chapter 1 Introduction................................................................................................................... 1 1.1 Motivation................................................................................................................................ 1 1.2 Literature Survey...................................................................................................................... 2 1.3 Contributions.......................................................................................................................... 12 1.4 Dissertation Organization........................................................................................................ 14 Chapter 2 Introduction of Baluns.................................................................................................. 16 2.1 Introduction............................................................................................................................. 16 2.2 Active Baluns.......................................................................................................................... 17 2.2.1 Single-end Transistor Active Baluns.................................................................................. 18 2.2.2 Common-source Common-gate Active Baluns.................................................................. 21 2.2.3 Differential Active Baluns.................................................................................................. 24 2.2.4 Distributed Active Baluns.................................................................................................. 27 2.3 Passive Baluns......................................................................................................................... 30 2.3.1 Rat-race Hybrids................................................................................................................ 30 2.3.2 Lumped-elements.............................................................................................................. 32 2.3.3 Planar Coupled-line Marchand Baluns............................................................................... 33 2.3.4 Broadside Coupled-line Marchand Baluns......................................................................... 35 2.3.5 Spiral-shaped or Transformer Type Baluns........................................................................ 36 2.4 Summary.................................................................................................................................. 38 Chapter 3 Analysis and Implement of Symmetric Offset Stack Balun............................................ 39 3.1 Analysis and Design of Symmetric Offset Marchand Balun..................................................... 39 3.2 Summary Design Procedure..................................................................................................... 46 3.3 Implementation and Measurement of Symmetric Offset Stack Baluns...................................... 47 3.3.1 Single Balun....................................................................................................................... 47 3.3.2 Dual Balun......................................................................................................................... 50 3.4 Summary.................................................................................................................................. 55 Chapter 4 Five Millimeter-Wave Broadband Mixers....................................................................... 56 4.1 The Sizes Choice of NMOS and PMOS for Resistive Mixers.................................................... 56 4.2 Single Balanced Resistive Mixer............................................................................................... 57 4.3 Star Resistive Mixer................................................................................................................... 61 4.4 Subharmonic Gate Pumped Resistive Mixer.............................................................................. 65 4.5 Star Diode Mixer....................................................................................................................... 69 4.6 Single Balanced Diode Mixer.................................................................................................... 73 4.7 Summary................................................................................................................................... 77 Chapter 5 Conclusion and Future Work............................................................................................79 Appendix A...................................................................................................................................... 81 References........................................................................................................................................ 82 Publication List................................................................................................................................. 91

    [1] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1329-1337, Sep. 2000.
    [2] M. Goldfarb, E. Balboni, and J. Gavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762-1766, Oct. 2003.
    [3] R. Svitek and S. Raman, “5-6 GHz SiGe active I/Q subharmonic mixer with power supply noise effect characterization,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 319-321, Jul. 2004.
    [4] K. J. Jon, M. Y. Park, C. S. Kim, and H. K. Yu, “ Subharmonically pumped CMOS frequency conversion (up and down) circuits for 2-GHz WCDMA direct-conversion transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 871-884, Jun. 2004.
    [5] T. Yamaji and H. Tanimoto, and H. Kokatsu, “An I/Q active balanced harmonic mixer with IM2 cancelers and a 45 degrees phase shifter,” IEEE J. Solid-State Circuits, Feb. 1998, pp. 368-369, 466.
    [6] J. Kim, K. T. Kornegay, J. Alvarado Jr., C. H. Lee, and J. Laskar, “W-band double-balanced down-conversion mixer with Marchand baluns in silicon-germanium technology,” Electron. Lett., vol. 45, no. 16, pp. 43-44, Jul. 2009.
    [7] M. Kimishima, T. Ataka, and H. Okabe, “A family of Q, V and W-band monolithic resistive mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2001, pp. 115-118.
    [8] A. R. Barnes, P. Munday, and M. T. Moore, “A comparison of W-band monolithic resistive mixer architectures,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 1867-1870.
    [9] T. A. Bos, and E. Camargo, “A balanced resistive mixer avoiding an IF balun,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 245-248.
    [10] S. Gunnarsson, K. Yhland, and H. Zirath, “pHEMT and mHEMT ultra wideband millimeterwave balanced resistive mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, pp. 1141-1144.
    [11] M. Varonen, M. Karkkainen, P. Kangaslahti and K. A. I. Halonen, “Resistive HEMT mixers for 60-GHz broad-band telecommunication,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1322-1330, Apr. 2005.
    [12] M. Varonen, M. Karkkainen, P. Kangaslahti and K. A. I. Halonen, “V-band balanced resistive mixer in 65-nm CMOS,” in Eur. Solid State Circuits Conf., Sep. 2007, pp. 360-363.
    [13] H. U. Wei, C. Meng, K. C. Tsung, and G. W. Huang, “12~18 GHz resistive mixer with a miniature marchand balun using standard CMOS process,” in Asia Pacific Micro. Conf., Dec. 2009, pp. 2312-2315.
    [14] K. W. Yeom, and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2435-2440, Jul. 2005.
    [15] M. Sudow, K. Andersson, P. A. Nilsson, and N. Rorsman, “A highly linear double balanced schottky diode S-band mixer,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 336-338, Jun. 2006.
    [16] C. C. Kuo, C. K. Kuo, C. J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixer,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 793-802, Apr. 2008.
    [17] J. C. Jeong, I. B. Yom, and K. W. Yeom, “An active IF balun for a doubly balanced resistive mixer,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 224-226, Apr. 2009.
    [18] S. Chenyan, L. Ivy, and B. L. Olga, “2.4 GHz 0.18 ?m CMOS passive mixer with integrated baluns,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 409-412.
    [19] C. H. Lien, P. H. Huang, K. Y. Kao, K. Y. Lin, and H. Wang, “60 GHz double-balanced gate-pumped down-conversion mixers with a combined hybrid on 130 nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 160-162, Mar. 2010.
    [20] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeter-wave monolithic sub-harmonically pumped resistive mixer,” IEEE Asia-Pacific Microwave Conference, Dec. 1999, pp. 222-225.
    [21] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature W-band MMIC subharmonically pumped resistive mixer,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 235-238.
    [22] Y. J. Hwang, H. Wang, and T. H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313-315, Jul. 2004.
    [23] P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element highpass/Band-pass balun,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 62-64, Feb. 2005.
    [24] F. Ellinger, “26.5-30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2559-2565, Aug. 2005.
    [25] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257-2264, Oct. 2006.
    [26] H. J. Wei, C. Meng, P. Y. Wu and K. C. Tsung, “K-band CMOS sub-harmonic resistive mixer with a miniature marchand balun on lossy silicon substrate,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 1, pp. 40-42, Jan. 2008.
    [27] J. H. Oh, S. W. Moon, D. S. Kang, and S. D. Kim, “High-performance 94-Ghz single-balanced diode mixer using disk-shaped GaAs Schottky diodes,” IEEE Trans. Electron Devices, vol. 30, no. 3, pp. 206-208, Mar. 2009.
    [28] V. Trifunovic, and B. Jokanovic, “Star mixer with high port-to-port isolation,” Electron. Lett., vol. 32, no. 24, pp. 2251-2252, Mar. 1996.
    [29] T. Y. Yang, W. R. Lien, C. C. Yang, and H. K. Chiou, “A compact V-band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537-539, Jul. 2007.
    [30] K. S. Ang, M. Chongcbeawcbamnan, and I. D. Robertsou, “Monolithic resistive mixers for 60 GHz direct conversion receivers,” IEEE Radio Frequency Integrated Circuits Symp., 2000, pp 35-38.
    [31] A. H. Baree, and I. D. Robertson, “Monolithic MESFET distributed baluns based on the distributed amplifier gate-line termination technique,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 2, pp. 188-195, Feb. 1997.
    [32] K. S. Ang, Y. C. Leong, and C. H. Lee, “Multisection impedance-transforming coupled-line baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 536-541, Feb. 2003.
    [33] J. Wang, W. Zhang, and Z. Yu, “The design of a planar-spiral transformers balun used in RF/MW based on 0.13 ?m CMOS process,” in Microwave and Millimeter-Wave technology, Apr. 2007, pp. 18-21.
    [34] J. X. Liu, C. Y. Hsu, H. R. Chuang, and C. Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” IEEE Radio Frequency Integrated Circuits Symp., 2007, pp 445-448.
    [35] J. C. Park, J. Y. Park, and H. S. Lee, “Fully embedded 2.4 GHz LC-balun into organic package substrate with series resonant tank circuit,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 190-1904.
    [36] B. Godara, and A. Fabre, “A highly compact active wideband balun with impedance transformation in SiGe BiCMPS,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 22-30, Jan. 2008.
    [37] P. Wu, Y. Zhang, Y. L. Dong, and O. Zhang, “A novel Ka-band plannar balun using microstrip-CPS-microstrip transition,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 136-138, Mar. 2011.
    [38] S. S. Kim, J. H. Lee, and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 440-442, Sep. 2004.
    [39] H. K. Chiou, and T. Y. Yang, “Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-?m CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 835-848, Apr. 2008.
    [40] Y. A. Lai, C. N. Chen, Y. H. Chang, and Y. H. Wang, “A planar dual 1800 hybrid using multicoupled line sections,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 68-70, Feb. 2011.
    [41] M. E. Goldfarb, J. B. Cole, and A. Platzker, “A novel MMIC biphase modulator with variable gain using enhancement-mode FETs suitable for 3 V wireless applications,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., May 1994, pp. 99-102.
    [42] H. Koizumi, S. Nagata, K. Tateoka, K. Kanazawa, and D. Ueda, “A GaAs single balanced mixer MMIC with built-in active balun for personal communication systems,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp., May 1995, pp. 77-80.
    [43] J. Ryynänen, K. Kivekäs, J. Jussila, A. Pärssinen, and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and SM applications,” IEEE J. Solid-State Circuits, vol. 36, no. 8, pp. 1198-1204, Aug. 2001.
    [44] M. Kawashima, T. Nakagawa, and K. Araki, “A novel broadband active balun,” in 33rd Eur. Microw. Conf., Oct. 2003, vol. 2, pp. 495-498.
    [45] K. Jung, W. R. Eisenstadt, R. M. Fox, A. W. Ogden, and J. Yoon, “Broadband active balun using combined cascade-cascade configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1790-1796, Aug. 2008.
    [46] P. Z. Rao, T. Y. Chang, C. P. Liang, and S. J. Chung, “An ultra-wideband high-linearity CMOS mixer with new wideband active baluns,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2184-2192, Sep. 2009.
    [47] Y. Xuan, and J. L. Fikart, “Computer-aided design of microwave frequency doublers using a new circuit structure,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2264-2268, Dec. 1993.
    [48] H. Ma, S. J. Fang, F. Lin, and H. Nakamura, “Novel active differential phase splitters in RFIC for wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2597-2603, Dec. 1998.
    [49] C. Viallon, D. Venturin, and T. Parra, “Design of an original K-band active balun with improved broadband balanced behavior,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 280-282, Apr. 2005.
    [50] Y. Ji, C. Wang, J. Liu, and H. Liao, “1.8 dB NF 3.6 mW CMOS active balun low noise amplifier for GPS”, Electron. Lett., vol. 46, no. 3, pp. 51-52, Feb. 2010.
    [51] A. M. Pavio, R. H. Halladay, S. D. Bingham, and C. A. Sapashe, “Double balanced mixers using active and passive techniques,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 12, pp. 1948-1957, Dec. 1988.
    [52] A. H. Baree and I. D. Robertson, “Analysis and design of multi-octave MMIC active baluns using a distributed amplifier gate line termination technique,” in IEEE Microw. Millimeter Wave Monolithic Circuits Symp., Dig., 1995, pp. 217-220.
    [53] M. Ferndahl, and H. O. Vickes, “The matrix balun - A transistor-based module for broadband applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 53-60, Jan. 2009.
    [54] A. M. Pavio, and A. Kikel, “A monolithic or hybrid broad-band compensated balun,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1990, pp. 483-486.
    [55] T. N. Ton, G. S. Dow, T. H. Chen, M. Lacon, T. S. Bui, and D. Yang, “An X-band monolithic double double-balanced mixer for high dynamic receiver application,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1990, pp. 197-200.
    [56] K. S. Ang, and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 1800 hybrids,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2739-2745, Dec. 2004.
    [57] C. H. Lien, C. H. Wang, C. S. Lin, P. S. Wu, K. Y. Lin, and H. Wang, “Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1966-1977, Aug. 2009.
    [58] H. K. Chiou, Y. R. Juang, and H. H. Lin, “Miniature MMIC star double balanced mixer using lumped dual balun,” Electron. Lett., vol. 33, no. 6, pp. 503-505, Mar. 1997.
    [59] H. Chiou, H. Lin, and C. Chang, “Lumped-element compensated high/low-pass balun design for MMIC double-balanced mixer,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 248-250, Aug. 1997.
    [60] D. Kuylenstierna and P. Linner, “Design of broad-band lumped-element baluns with inherent impedance transformation,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2739-2745, Dec. 2004.
    [61] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1009-1017, Mar. 2003.
    [62] N. Marchand, “Transmission line conversion transformers,” Electron., vol. 17, p. 142, Dec. 1944.
    [63] Z. Y. Zhang, Y. X. Guo, L. C. Ong, and M. Y. W. Chia, “A new planar Marchand balun,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 175-178.
    [64] M. J. Chiang, H. S. Wu, and C. K. C. Tzuang, “A compact CMOS Marchand balun incorporating meandered multilayer edge-coupled transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 125-128.
    [65] S. A. Maas and K. W. Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microwave Theory and Tech., vol. 41, no. 12, pp. 2330-2335, Dec.1993.
    [66] B. H. Lee, D. S. Park, S. S. Park, and M. C. Park, “Design of new three-line balun and its implementation using multilayer configuration,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 4, pp. 1405-1414, Apr. 2006.
    [67] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microwave Theory and Tech., vol. 55, no. 6, pp. 1190-1199, Jun. 2007.
    [68] R. Schwindt, and C. Nguyen, “Computer-aided analysis and design of a planar multilayer Marchand balun,” IEEE Trans. Microwave Theory and Tech., vol. 42, No. 7, pp. 1429-1434, Jul. 1994.
    [69] P. S. Wu, C. S. Lin, T. W. Huang, H. Wang, Y. C. Wang and C. S. Wu, “A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun,” 2005 European Gallium Arsenide and Other Semiconductor Application Symp., 2005, pp. 349-352.
    [70] T. Y. Yang, and H. K. Chiou, “A 16-46 GHz mixer using broadband multilayer balun in 0.18-?m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 534-536, Jul. 2007.
    [71] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, no. 4, pp. 182-184, Apr. 1999.
    [72] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau, P. R. Smith, L. Ahlquist, and D. P. Kossives, “Design and characterization of multilayer spiral transmission-line baluns,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 9, pp. 1841-1847, Sep. 1999.
    [73] H. Y. Yu, S. S. Choi, S. H. Kim, and Y. H. Kim, “K-band balun with slot pattern ground for wide operation using 0.18 mm CMOS technology,” Electron. Lett., vol. 43, no. 5, pp. 503-505, Mar. 2007.
    [74] M. Kaixue, M. Jianguo, J. Lin, O. Benghwee, S. Y. Kiat, and A. D. Manh, “800 MHz-2.5 GHz miniaturized multi-layer symmetrical stacked baluns for silicon based RF ICs,” IEEE MTT-S Int. Microw. Symp.Dig., Sep. 2005, pp. 283-286.
    [75] W. Z. Chen, W. H. Chen, and K. C. Hsu, “Three-dimensional fully symmetric inductors, transformer, and balun in CMOS technology,” IEEE Trans. Circuits Syst. I, vol. 54, no. 7, pp. 1413-1423, Jul. 2007.
    [76] Y. C. Lee, C. M. Lin, S. H. Hung, C. C. Su, and Y. H. Wang, “A broadband doubly balanced monolithic ring mixer with a compact intermediate frequency (IF) extraction,” Progress In Electromagnetics Research Letters, vol. 20, pp. 175-184, 2009.
    [77] C. M. Lin, Y. C. Lee, S. H. Hung, and Y. H. Wang, “A 28-40 GHz doubly balanced monolithic passive mixer with a compact IF extraction,” Progress In Electromagnetics Research Letters, vol. 9, pp. 59-66, 2010.
    [78] C. H. Lin, H. Z. Liu, C. K. Chu, H. K. Huang, C. C. Liu, and C. H. Chang, “A ku/k-band PHEMT diode single-balanced mixer,” in Solid-State Integrated Circuit Technol. Conf., Oct. 2006, pp. 884-886.
    [79] J. Guo, Z. Xu, C. Qian, and W. Dou, “Design of a microstrip balanced mixer for satellite communication,” Progress In Electromagnetics Research, vol. 115, pp. 289-301, 2011.

    QR CODE
    :::