| 研究生: |
盧政瑋 Cheng-Wei Lu |
|---|---|
| 論文名稱: |
集水區地貌參數之分佈特性-以蘭陽溪及陳有蘭溪流域之土石流潛勢溪流為例 Distribution characteristics of geomorphic parameters in watershed : example from the potential debris flow in Lanyang River and Chenyulan River basin |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 蘭陽溪流域 、陳有蘭溪流域 、土石流潛勢溪流 、集水區險峻值 、形狀係數 |
| 外文關鍵詞: | Lanyang River basin, Chenyoulan River basin, Potential debris flow torrent, Melton Ratio, Form Factor |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用地理資訊系統(GIS)從數值地形模型中萃取蘭陽溪及陳有蘭溪流域內土石流潛勢溪流之地貌參數,計算集水區內沿程各溪流點的集水區險峻值(Melton Ratio, MR),並將子集水區中集水區險峻值(MR)的變化趨勢分為趨勢向上、趨勢持平、趨勢向下三類。不同土砂類型的集水區,其子集水區中的MR變化趨勢不盡相同,高含砂水流集水區大多為趨勢向上,土石流集水區則為趨勢持平或向下。影響MR變化的因子除了高程與面積外,集水區的形狀係數亦是影響參數,本研究另外使用形狀係數來探討其對Melton Ratio的影響,結果為趨勢向下之集水區其形狀係數較小,表示集水區形狀大多呈現細長型。
In this study, Geographic Information System (GIS) was used to extract the geomorphological parameters of the potential debris flow torrents in the digital elevation model of Lanyang River and Chenyoulan River basin. The Melton Ratio of each stream in the watershed, and classify the trends of Melton Ratio in the sub-watersheds were classified into three categories: upward trend, flat trend, and downward trend. The watershed with different soil hazard types, their sub-watersheds also have different trend of Melton Ratio. Most of the debris flood watersheds are show the upward trend, while the debris flow watersheds are usually with flat or downward trend. In addition to the elevation and area, the other factor affecting the trend of Melton Ratio is the Form Factor. The influence of Form factor on the Melton Ratio was explored in this study. When the watersheds have downward trend, the value of Form Factor will be smaller which means the watershed is a elongate shape.
1.尹承遠、翁勳政、吳仁明、歐陽湘,“臺灣土石流之特性”,工程地質技術應用研討會(V)論文集,P70-90,1993。
2.王虹萍、周天穎,“結合層級分析法與模糊理論於土石流潛勢評估之研究-以陳有蘭溪集水區爲例”,水保技術,5卷1期,P13-22,2010。
3.王家耀、崔鐵軍、苗國強,“數字高程模型及其數據結構”,海洋測繪”,第24卷第3期,2004。
4.吳仁明、趙家民,“苗栗火炎山崩塌地變遷對土石流發生之研究”,環境與管理研究,第9卷第1期,P129-149,2008。
5.李錫堤、費立沅,“蘭陽溪流域之山崩土石流潛在危害預測”,前瞻科技與管理,1卷2期,2011。
6. 沈哲緯、蕭震洋、羅文俊,“花蓮縣土石流潛勢溪流地文特性初探”,水保技術,7卷2期,P96-105,2012。
7.阮香蘭、何智武、呂建華,“石門水庫集水區河川系統之研究”,中華水土保持學報,23卷2期,P13-28,1992。
8.周憲德、曹鼎志、李璟芳,“土石流潛勢溪流之地文因子綜整判定”,水土保持局期末報告書,2017。
9.周憲德、曹鼎志、李璟芳,“土石流潛勢溪流之集水區地文參數判釋及驗證-以蘭陽溪流域為例”,水土保持局期末報告書,2019。
10.林昭遠、張力仁,“地文因子對土石流發生影響之研究-以陳有蘭溪為例”,中華水土保持學報,31卷3期,P227-237,2000。
11.林美聆、陳彥澄,“應用光達地形資料於莫拉克災後陳有蘭溪流域崩塌與土石流地質敏感地區判釋與分析”,航測及遙測學刊,第18卷第2期,P129-144,2014。
12.林政誼,“集水區險峻值於蘭陽溪土石流潛勢溪流之綜整判釋”,國立中央大學,碩士論文,2019。
13.陳榮河、江英政,“新中橫公路邊坡破壞之調查”,第二屆土石流研討會論文集,P180-189,1999。
14.張瑞津,“臺灣沖積扇之分布、型態及地形意義”,地質,17卷1-2期,P62-93,1997。
15.黃棨霠,“坡地土砂災害之地貌因子綜合判釋”,國立中央大學,碩士論文,2017。
16.湯國安、劉學軍、閭國年,“數字高程模型極地學分析的原理與方法”,北京-科學出版社,2005。
17.湯國安,“中國數字高程模型與數字地形分析研究進展”,地理學報,第69卷第9期,2014。
18.楊明德、林基源、林蔚榮、黃凱翔、吳東諺,“莫拉克颱風於陳有蘭溪流域之災害調查”,中華水土保持學報,40卷4期,P345-358,2009。
19.Asfaw, D., Workineh, G., “Quantitative analysis of morphometry on Ribb and Gumara watersheds: Implications for soil and water conservation”, International Soil and Water Conservation Research Volume 7, Issue 2, pages 150-157, 2019.
20.Brenna, A., Surian, N., Ghinassi, M., Marchi, L., “Sediment–water flows in mountain streams: Recognition and classification based on field evidence”, Geomorphology Volume 371, 107413, 2020.
21.Cavalli, M., Crema, S., Trevisani, S., Marchi, L., “GIS tools for preliminary debris-flow assessment at regional scale”, Journal of Mountain Science Volume 14, pages 2498-2510, 2017.
22.Chen, C.Y., Yu, F.C., “Morphometric analysis of debris flows and their source areas using GIS”, Geomorphology Volume 129, Issues 3-4, 2011.
23.Chopra, R., Dhiman, R.D., Sharma, P., “Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques”, Journal of the Indian Society of Remote Sensing, Vol. 33, No. 4, 2005.
24.Horton, R.E., “Drainage-basin characteristics”, Transactions American Geophysical Union Volume 13, Issue1, pages 350-361, 1932.
25.Ilinca, V., “Using morphometrics to distinguish between debris flow, debris flood and flood (Southern Carpathians, Romania)”, CATENA Volume 197, 104982, 2021.
26.Khare, D., Mondal, A., Mishra, P.K., Kundu, S., Meena, P.K., “Morphometric analysis for prioritization using remote sensing and GIS techniques in a hilly catchment in the state of Uttarakhand, India”, Indian Journal of Science and Technology, Vol 7(10), 1650-1662, 2014.
27.Marchi, L., Fontana, G.D., “GIS morphometric indicators for the analysis of sediment dynamics in mountain basins”, Environmental Geology Volume 48, pages 218-228, 2005.
28.Montgomery, D.R., Dietrich, W.E., “Channel initiation and the problem of landscape scale”. Science, 255, 826-830, 1992.
29.Thakkar, A.K., Dhiman, S.D., “Morphometric analysis and prioritization of mini-watersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques”, Journal of the Indian Society of Remote Sensing Volume 35, pages 313-321, 2007.
30.Wilford, D.J., Sakals, M.E., Innes, J.L., Sidle R.C., Bergerud W.A., “Recognition of debris flow, debris flood and flood hazard through watershed morphometrics”, Landslides 1, 61-66, 2004.
31.Welsh, A., Davies, T., “Identification of alluvial fans susceptible to debris-flow hazards”, Landslides 8, 183-194, 2011.