| 研究生: |
歐士豪 Shih-Hao Ou |
|---|---|
| 論文名稱: |
多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制 Out-of-Order Transmission Enabled Congestion and Scheduling Control for Multipath TCP |
| 指導教授: | 黃志煒 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 多路徑傳輸控制協定 、多路徑傳輸協定之Linux核心實現 、封包亂序 、壅塞控制 、封包排程 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線網路通訊技術的發展日新月異,行動裝置的普及直接也間接地促使了同一裝置使用多個網路介面的應用。
在傳輸層的多路徑傳輸控制協定 (MPTCP) 可在具多網路型態介面的端點裝置下同時進行彼此的資料傳輸,MPTCP 不僅相容於現今的網路規格並且能夠確實的提升傳輸效率以及降低延遲,對於日後物聯網的串流應用有著莫大的幫助。
為了提升 MPTCP 的效能,壅塞控制、公平性、以及路徑排程已經變成許多研究爭相討論的議題。
在此論文中,我們利用了可適應性的壅塞窗格耦合、預測網路狀態、以及亂序傳輸的控制器,最終提出了藉由允許亂序傳輸以結合壅塞控制以及路徑排程的演算法以全盤解決現在 MPTCP 中潛在的問題。
我們將此演算法寫入 Linux kernel 內並在真實世界的網路下做量測,最後的實驗環境包含了最小網路拓樸、共同網路瓶頸、以及獨立網路瓶頸。
With development of wireless communication technologies, mobile devices are commonly equipped with multiple network interfaces and ready to adopt emerging transport layer protocols such as multipath TCP (MPTCP).
The protocol is specifically useful for Internet of Things streaming applications with critical latency and bandwidth demands.
To achieve full potential of MPTCP, major challenges on congestion control, fairness, and path scheduling are identified and draw considerable research attention.
In this paper, we propose a joint congestion control and scheduling algorithm allowing out-of-order transmission as an overall solution.
It is achieved by adaptive window coupling, congestion discrimination, and out-of-order transmission enabled scheduling.
The algorithm is implemented in the Linux kernel for real-world experiments.
Favorable results are obtained in minumum topology and both shared or distinct bottleneck scenarios.
[1]M. Becke, T. Dreibholz, A. Bayer, M. Packeiser, and E.P. Rathgeb. Alternative trans- mission strategies for multipath transport of multimedia streams over wireless net- works. In Telecommunications (ConTEL), 2013 12th International Conference on, pages 147–154, June 2013.
[2]Yung-Chih Chen, Yeon-sup Lim, Richard J. Gibbens, Erich M. Nahum, Ramin Khalili, and Don Towsley. A measurement-based study of multipath TCP perfor- mance over wireless networks. In Proceedings of the 2013 Conference on Internet Measurement Conference, pages 455–468, New York, NY, USA, 2013.
[3]A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath Operation with Multiple Addresses. RFC 6824, IETF, January 2013.
[4]Mark Handley, Costin Raiciu, Alan Ford, Janardhan Iyengar, and Sebastien Barre.
Architectural guidelines for multipath tcp development, rfc6182. 2011.
[5]Sofiane Hassayoun, Janardhan Iyengar, and David Ros. Dynamic Window Coupling for multipath congestion control. In 2011 19th IEEE International Conference on Network Protocols, pages 341–352. IEEE, October 2011.
[6]T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 6582, IETF, April 2012.
[7]Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. Tackling bufferbloat in 3g/4g networks. In Proceedings of the 2012 ACM Conference on Internet Measure- ment Conference, IMC ’12, pages 329–342, New York, NY, USA, 2012. ACM.
[8]Ramin Khalili, Nicolas Gast, Miroslav Popovic, and Jean-Yves Le Boudec. MPTCP Is Not Pareto-Optimal: Performance Issues and a Possible Solution. IEEE/ACM Transactions on Networking, 21(5):1651–1665, October 2013.
[9]M.Allman, V. Paxson, and E. Blanton. Tcp congestion control. RFC 5681, 2009.
[10]C. Paasch and S. Barre. Multipath TCP in the Linux Kernel, August 2014.
[11]Christoph Paasch and Olivier Bonaventure. Multipath TCP. Communications of the ACM, 57(4):51–57, apr 2014.
[12]Se-Yong Park, Changhee Joo, Yongseok Park, and Saewoong Bank. Impact of traffic splitting on the delay performance of MPTCP. In 2014 IEEE International Confer- ence on Communications (ICC), pages 1204–1209. IEEE, June 2014.
[13]C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for Multipath Transport Protocols. RFC 6356, IETF, October 2011.
[14]Costin Raiciu, Damon Wischik, and Mark Handley. Practical congestion control for multipath transport protocols. University College London, London/United Kingdom, Tech. Rep, 2009.
[15]Denis Ros a´rio, Zhongliang Zhao, Aldri Santos, Torsten Braun, and Eduardo Cerqueira. A beaconless Opportunistic Routing based on a cross-layer approach for efficient video dissemination in mobile multimedia IoT applications. Computer Com- munications, 45:21–31, jun 2014.
[16]Amanpreet Singh, Carmelita Goerg, Andreas Timm-Giel, Michael Scharf, and Thomas-Rolf Banniza. Performance comparison of scheduling algorithms for mul- tipath transfer. In Global Communications Conference (GLOBECOM), 2012 IEEE, pages 2653–2658. IEEE, 2012.
[17]Amanpreet Singh, Mei Xiang, Andreas Konsgen, and Carmelita Goerg. Performance and fairness comparison of extensions to dynamic window coupling for multipath tcp. In Wireless Communications and Mobile Computing Conference (IWCMC), 2013 9th International, pages 947–952. IEEE, 2013.
[18]Sebastian Sonntag and Henna Suomi. Economic feasibility of multipath protocols in mobile Internet of Things applications. Concurrency and Computation: Practice and Experience, 27(8):1913–1931, jun 2015.
[19]Fan Yang, Paul Amer, and Nasif Ekiz. A Scheduler for Multipath TCP. In 2013 22nd International Conference on Computer Communication and Networks (ICCCN), pages 1–7. IEEE, July 2013.
[20]Fan Yang, Qi Wang, and P.D. Amer. Out-of-order transmission for in-order arrival scheduling for multipath tcp. In Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on, pages 749–752, May 2014.
[21]Weihua Zhuang, Neda Mohammadizadeh, and Xuemin Shen. Multipath transmission for wireless internet access–from an end-to-end transport layer perspective. J. Internet Technol, 13(1):1–18, 2012.