| 研究生: |
單少如 Shau-Ru Dai |
|---|---|
| 論文名稱: |
利用數值模擬與全球定位系統研究電離層赤道異常區 |
| 指導教授: |
郭富雄
FU-SHONG KUO |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在赤道區電離層F 層不規則體(F-region irregularities) 被廣泛
地觀測與數值模擬研究後,對於其產生的機制已逐漸地瞭解,基本
上是由GRT 不穩定性(Gravitational Rayleigh-Taylor Instability),再
加上B E
v v
× 梯度漂移不穩定性( B E
v v
× Gradient Drift Instability),兩者
的效應造成電離層F 層的不規則體。此種不規則體是由電離層底部
產生的擾動,受到GRT 與B E
v v
× 不穩定性的放大效果逐漸往上舉升,
最後穿過電離層最大密度區(F-region peak)。但由衛星AE-C 與
AE-E 的觀測資料,發覺有一種F 層底部正弦曲線不規則體
(Bottomside Sinusoidal (BSS) Irregularity) 的存在,對於此種不規則
體因為缺乏數值模擬的研究,所以對其產生機制並不瞭解。因此本
篇主要目的之一是要瞭解此種不規則體的形成機制。
本篇另一個主要目的為瞭解電離層不規則體發生的經度與季節
的關係與磁暴對控制電離層不規則體的形成的兩個研究。因為全球
定位系統(Global Positioning System, GPS) 的地面觀測站分佈於全
球,適合研究全球電離層不規則體發生的經度與季節的關係。另外
在磁暴與電離層不規則體的研究,為了排除其他控制電離層不規則
體形成的影響,所以選擇不規則體不易產生的季節,當磁暴發生時,
利用全球定位系統在中南美洲的地面觀測站來分析電離層的反應。
對於F 層底部不規則體的研究主要是利用數值模擬的方法,由
二維電漿流體模擬程式(Fluid model simulation code) 來模擬此種
不規則體產生的條件。由International GPS Service (IGS) 所提供的
資料,來研究電離層不規則體發生的經度與季節的關係與磁暴對控
制電離層不規則體的形成。對於前者我們選擇1998 年的整年資料來
分析。對於後者選擇從1997 至2000 年五月至八月發生的磁暴(五
月至八月期間,對於中南美洲而言,是不規則體不易產生的季節) 來
分析電離層的狀況。利用全球定位系統雙頻虛擬距離與載波相位觀
測的組合來求得電離層全電子含量值(Total Electron Content,
TEC),再由全電子含量值在時間上的變化量,得到由電離層不規則
體所造成的全球定位系統相位擾動。由實際觀測天數與有相位擾動
發生的天數得到的統計資料,來分析電離層不規則體發生的經度與
季節的關係。另外根據磁暴發生時,地磁指數Dst 變化的情形與觀
測得到的相位擾動之間的關係,來瞭解磁暴控制電離層不規則體的
情形。
由二維電漿流體模擬程式模擬不同的電離層外在的環境,最後
終於成功地找出電離層F 層底部不規則體形成所需要的環境。當電
離層底部產生的擾動,受到GRT 與B E
不穩定性的放大效果逐漸
往上舉升,此時若在電離層最大密度區下存在一層噴射氣流(垂直風
切),因為動力不穩定性的關係,會把擾動限制在電離層底部發展而
不會繼續往上,因此形成電離層底部不規則體。
在研究電離層不規則體發生的經度與季節之間的關係,我們得
到在大西洋區電離層不規則體的發生頻率,冬季(5 月至8 月)比夏季
(11 月至隔年2 月)甚少,在太平洋的區域,則有相反的結果。磁暴
與電離層GPS 相位擾動之間的研究,經過八個磁暴資料的分析得到
地磁指數Dst 變化的時間與全球定位系統相位擾動的產生有相當程
度的關係,只有當地磁指數Dst 的數值在當地的日落前後開始劇烈
地下降,才會造成強烈的相位擾動,另外磁暴的強度也是控制電離
層不規則體發生的因素之一。
After extensive research efforts in both observations and theoretical simulation, it
is generally believed that the F-region irregularities in the ionosphere above the
equator are generated by the combined effects from the gravitational Rayleigh-Taylor
(GRT) instability and the ExB gradient drift instability. Such generated irregularities
initiate near the bottom of ionosphere due to small disturbances. They are amplified
by GRT and ExB and gradually move upward, eventually penetrate the F-region peak
of the ionosphere. However, observations from Satellites AE-C and AE-E suggest the
existence of F-region bottomside sinusoidal (BSS) irregularities. Due to the lack of
numerical modeling on such features, the mechanism responsible for their occurrence
is not well understood, which is one of the purposes of this study.
Another goal of this study is to understand the relationship between the
occurrence of ionospheric irregularities and controlling factors such as the longitude,
the season, as well as the existence of magnetic storms. The worldwide distribution of
Global Positioning System (GPS) stations enables such studies. I analyze the
ionospheric characteristics in mid- and south- America using GPS signals to study the
effect of magnetic storm on the generation of irregularities, specifically choosing the
low-occurrence season to prevent the effects from other factors.
The study on the occurrence of F-region BSS irregularities is done through
numerical simulation using the two-dimensional fluid model simulation code. The
GPS data, which is used to study the relationship between the occurrence of
irregularities and factors such as the longitude, season, and the existence of magnetic
storms, are provided by the International GPS Service (IGS). For the formal, we select
the entire year of 1998 for analysis, while for the later we choose magnetic storms that
occurred in May-August (i.e., the low-occurrence season in mid- and south-America)
between 1997 and 2000. Utilizing the information from dual-frequency pseudo range
measurements and the carrier phase observations, the total electron content (TEC) can
be estimated. Consequently, the variation of TEC with respect to time gives the GPS
phase fluctuation due to the ionospheric irregularities. The relation between the
occurrence of irregularities and the longitude and season can be then derived from the
statistics on the number of days when irregularities are observed versus the total
number of observation days. Furthermore, the effect of magnetic storms on the
generation of irregularities can be delineated from the time sequence of Dst index and
phase fluctuations.
Our simulation results indicate that specific environment is necessary for the
occurrence of F-region BSS irregularities. When the seeding disturbance near the
bottom side of F-region moves upward due to the amplifying effects from GRT and
ExB instabilities, the dynamic instability would confine the generated irregularity
near the bottom of ionosphere if there is a jet stream (i.e., vertical wind shear)
immediately below the F-region peak of the ionosphere, resulting the F-region BSS
irregularities.
As for the relationship between the irregularities and longitude/season, our results
indicate stations in the Atlantic have high occurrence rate in winter (May-August)
than in summer (November-February). In contrast, stations in the Pacific have the
opposite pattern. Our study on the 8 magnetic storms indicates significant correlation
between the time variation of Dst index and the GPS phase fluctuations. Strong phase
fluctuations can be observed only when Dst index drops rapidly during the time of
sunset. Furthermore, the intensity of the magnetic storm is another factor that controls
the occurrence of ionospheric irregularities.
Aarons, J., The role of the ring current in the generation or inhibition of
equatorial F layer irregularities during magnetic storms, Radio Sci., 26,
1131-1149, 1991.
Aarons, J., The longitudinal morphology of equatorial F-layer
irregularities relevant to their occurrence, Space Sci. Rev., 63, 209-243,
1993.
Aarons, J., M. Mendillo, and R. Yantosca, GPS phase fluctuations in the
equatorial region during the MISETA 1994 campaign, J. Geophys.
Res., 101, 26,851-26,862, 1996.
Aarons, J., M. Mendillo, and R. Yantosca, GPS phase fluctuations in
the equatorial region during sunspot minimum, Radio Sci., 32,
1535-1550, 1997.
Aarons, J., M. Mendillo, B. Lin, M. Colerico, T. Beach, P. Kintner, J.
Scali, B. Reinisch, G. Sales and E. Kudeki, Equatorial F region
irregularity morphology during an equinoctial month at solar
minimum, Space Sci. Rev., 87, 357-386, 1999.
Aarons, J., B. Lin, and M. Mendillo, Global positioning system phase
fluctuations and ultraviolet images from the polar satellite, J.
Geophys. Res., 105, 5201-5213, 2000.
Basu, Su., E. MacKenzie, and S. Basu, Ionospheric constraints on
VHF/UHF communication links during solar maximum and
minimum periods, Radio Sci., 23, 363-378, 1988.
Batista, I.S., M.A. Abdu, and J.A. Bittencourt, Equatorial F region
vertical plasma drifts: Seasonal and longitudinal asymmetries in the
American sector, J. Geophys. Res., 91, 12,055-12,064, 1986.
Batista, I.S., E.R.D. Paula, M.A. Abdu, and N.B. Trivedi, Ionospheric
effects of the March 13, 1989, Magnetic storm at low and equatorial
latitudes, J. Geophys. Res., 96, 13,943-13,952, 1991.
Beach, T.L., and P.M. Kintner, Simultaneous global positioning system
observations of equatorial scintillations and total electron content
fluctuations, J. Geophys. Res., 104, 22,553-22,565, 1999.
Blanc, M., and A.D. Richmond, The ionospheric disturbance dynamo, J.
Geophys. Res., 85, 1669-1686, 1980.
Booker, H.G. and H. W. Wells, Scattering of radio waves by the
F-region of the ionosphere, J. Geophys. Res., 43, 249, 1938.
Chou, S.Y., and F.S. Kuo, A numerical study of the wind field effect on
the growth and observability of equatorial spread F, J. Geophys. Res.,
101, 17,137-17,149, 1996.
Cragin, B.L., C.E. Valladares, W.B. Hanson, and J.P. McClure,
Bottomside sinusoidal irregularities in the equatorial F region 2.
Cross-correlation and spectral analysis, J. Geophys. Res., 90,
1721-1734, 1985.
Dabas, R. S., D. R. Lakshmi, and B. M. Reddy, Effect of geomagnetic
disturbances on the VHF nighttime scintillation activity at equatorial
and low latitudes, Radio Sci., 24, 563-573, 1988.
Davies, K., Ionospheric Radio, 580 pp., Peter Peregrinus Ltd, London,
1990.
Dungey, J.W., Convective diffusion in equatorial F-region, J. Atmos.
Terr. Phys., 9, 304, 1956.
Fejer, B.G., E.R.d. Paula, I.S. Batista, E. Bonelli, and R.F. Woodman,
Equatorial F region vertical plasma drifts during solar maxima, J.
Geophys. Res., 94, 12,049-12,054, 1989.
Fukao, S., Y. Yamamoto, W. L. Oliver, T. Takami, M. D. Yamanaka,
M. Yamamoto, T. Nakamura, and T. Tsuda, Middle and upper
atmosphere radar observations of ionosphic horizontal gradients
produced by gravity waves, J. Geophys. Res., 98, 9443-9451,
1993.
Gonzales, C.A., M.C. Kelley, R.A. Behnke, J.F. Vickrey, R. Wand, and J.
Holt, On the latitudinal variations of the ionospheric electric field
during magnetospheric disturbances, J. Geophys. Res., 88, 9135-9144,
1983.
Ho, C.M., A.J. Mannucci, U.J. Lindqwister, X. Pi, and B.T. Tsurutani,
Global ionosphere perturbations monitored by the worldwide GPS
network, Geophys. Res. Lett., 23, 3219-3222, 1996.
Hofmann-Wellenhof, B., H. Lichtenegger, J. Collins, GPS Theory
and Practice, 389 pp., Springer-Verlag Wien, New York, 1997.
Huang, C. M., F. S. Kuo, H. Y. Lue, and C. H. Liu, Numerical
simulation of the saturated gravity wave spectra in the atmosphere,
J. Atmos, Terr. Phys., 54, 129-142, 1992.
Huang, C.S., M.C. Kelley, and D.L. Hysell, Nonlinear Rayleigh-Taylor
instabilities, Atmospheric gravity waves and equatorial spread F, J.
Geophys. Res., 98, 15,631-15,642, 1993.
Huang, C.S., and M.C. Kelley, Nonlinear evolution of equatorial spread
F 3. Plasma bubbles generated by structured electric fields, J.
Geophys. Res., 101, 303-313, 1996.
Huang, C.S., and M.C. Kelley, Nonlinear evolution of equatorial spread
F 1. on the role of plasma instabilities and spatial resonance
associated with gravity wave seeding, J. Geophys. Res., 101,
283-292, 1996.
Huang, C.S., and M.C. Kelley, Nonlinear evolution of equatorial spread
F 2. Gravity wave seeding of Rayleigh-Taylor instability, J. Geophys.
Res., 101, 293-302, 1996.
Huang, Y.-N., K. Cheng, and S.-W. Chen, On the detection of
acoustic-gravity waves generated by typhoon by use of real time HF
Doppler frequency shift sounding system, Radio Sci., 20, 897-906,
1985.
Hysell, D.T., M.C. Kelley, W.E. Swartz, and R.F. Woodman, Seeding
and layering of equatorial spread F by gravity waves, J. Geophys.
Res., 95, 17,253-17,260, 1990.
Jakowski, N., S. Schluter, and E. Sardon, Total electron content of the
ionosphere during the geomagnetic storm on 10 January 1997, J.
Atmos. and Sol. Terr. Phys., 61, 299-307, 1999.
Jones, K.L., and H. Rishbeth, The origin of storm increases of
mid-latitude F-layer electron concentration, J. Atmos. Terr. Phys., 33,
391-401, 1971.
Kelley, M.C., G. Haerendel, H. Kraaler, A. Valenzuela, B.B. Balsley,
D.A. Carter, W.L. Ecklund, C.W. Carlson, B. Hausler, and R.
Torbert, Evidence for a rayleigh-taylor type instability and
upwelling of depleted density regions during equatorial spread F,
Geophys. Res. Lett., 3, 448-450, 1976.
Kelley, M.C., B.G. Fejer, and C.A. Gonzales, An explanation for
anomalous ionospheric electric fields associated with a northward
turning of the interplanetary magnetic field, Geophys. Res. Lett., 6,
301-304, 1979.
Kelley, M.C., M.F. Larsen, C. LaHoz, and J.P. McClure, Gravity wave
initiation of equatorial spread F: A case study, J. Geophys. Res., 86,
9087-9100, 1981.
Kelley, M.C., The Earth''s Ionosphere, 487 pp., Academic Press, San
Diego, 1989.
Kuo, F. S., H. Y. Lue, C. M. Huang, C. L. Lo, C. H. Liu, S. Fukao, and
Y. Muraoka, A study of velocity fluctuation spectra in the
troposphere and lower stratosphere using MU radar, J. Atmos. Terr.
Phys., 54, 31-48, 1992.
Kuo, F. S., and H. Y. Lue, Effect of the wave-shear interaction on
gravity wave activity in the lower and middle atmosphere, J. Atmos.
Terr. Phys., 56, 1147-1155, 1994.
Kuo, F. S., S. Y. Chou, S. J. Shan, Comparison of topside and
bottomside irregularities in equatorial F region ionosphere, J.
Geophys. Res., 103, 2193-2199, 1998.
Lindzen, R. S., Reconsideration of diurnal velocity oscillation in the
thermosphere, J. Geophys. Res., 72, 1591-1598, 1967.
Leick, A., GPS Satellite Surveying, 560 pp., John Wiley & Sons, New
York, 1995.
Liu, J.Y., H.F. Tsai, and T.K. Jung, Total electron content obtained by
using the global positioning system, Terr. Atmos. Oceanic Sci., 7,
111-121, 1996.
Liu, J. Y., H. F. Tsai, C. C. Wu, C. L. Tseng, L. C. Tsai, W. H. Tasi, K.
Liou and J. K. Chao, The effect of geomagnetic storm on
ionospheric total electron content at equatorial anomaly region, Adv.
Space Res., 24, 1491-1494, 1999.
Martyn D. F., Large-scale movements of ionization in the ionosphere, J.
Geophys. Res., 64, 2178, 1959.
Maruyama, T., and N. Matuura, Longitudinal variability of annual
changes in activity of equatorial spread F and plasma bubbles, J.
Geophys. Res., 89, 10,903-10,912, 1984.
Maruyama, T., A diagnostic model for equatorial spread F: 1. Model
description and application to electric field and neutral wind effects, J.
Geophys. Res., 93, 14,611-14,622, 1988.
Mendillo, M., B. Lin, and J. Aarons, The application of GPS
observations to equatorial aeronomy, Radio Sci., 35, 885-904, 2000.
McClure, J.P., W.B. Hanson, and J.H. Hoffman, Plasma bubbles and
irregularities in the equatorial ionosphere, J. Geophys. Res., 82,
2650-2656, 1977.
Mullen, Sensitivity of equatorial scintillation to magnetic activity, J.
Atmos. Terr. Phys., 35, 1187-1194, 1973.
Neubert, T., M. Mandea, G. Hulot, R. von Frese, F. Primdahl, J. L.
Jørgensen, E. Friis-Christensen, P. Stauning, N. Olsen, and T. Risbo,
ørsted satellite captures high-precision geomagnetic field data, EOS
Trans. Am. Geophys. Union, 82, 81-88, 2001.
Ossakow, S.L., Spread-F theories---a review, J. Atmos. Terr. Phys., 43,
437-452, 1981.
Pi, X., A.J. Mannucci, U.J. Lindqwister, and C.M. Ho, Monitoring of
global ionospheric irregularities using the worldwide GPS network,
Geophys. Res. Lett., 24, 2283-2286, 1997.
Rottger, J., Equatorial spread-F by electric fields and atmospheric
gravity waves generated by thunderstorms, J. Atmos. Terr. Phys., 43,
453-462, 1981.
Sardón, E., A. Rius, and N. Zarraoa, Estimation of the transmitter and
receiver differential biases and the ionospheric total electron content
from Global Positioning System observations, Radio Sci., 29, 577-586,
1994.
Sastri, J.H., K.B. Ramesh, and D. Karunakaran, On the nature of
substorm-related transient electric field disturbances in the
equatorial ionosphere, Planet. Space Sci., 40, 95-103, 1992.
Scannapieco, A.J., and S.L. Ossakow, Nonlinear equatorial spread F,
Geophys. Res. Lett., 3, 451-454, 1976.
Shu, F. H., An Introduction to Astronomy, 584 pp., University Science
Books, Mill Valley, 1982.
Singh, S., F.S. Johnson, and R.A. Power, Gravity wave seeding of
equatorial plasma bubbles, J. Geophys. Res., 102, 7399-7410, 1997.
Su, Y.Z., K.-I. Oyama, G.J. Bailey, S. Fukao, T. Takahashi, and H. Oya,
Longitudinal variations of the topside ionosphere at low latitudes:
Satellite measurements and mathematical modelings, J. Geophys. Res.,
101, 17,191-17,205, 1996.
Tsai, H.F. and J.Y. Liu, Ionospheric total electron content response to
solar eclipses, J. Geophys. Res., 104, 12,657-12,668, 1999.
Tsunoda, R.T., Control of the seasonal and longitudinal occurrence of
equatorial scintillations by the longitudinal gradient in integrated E
region Pedersen conductivity, J. Geophys. Res., 90, 447-456, 1985.
Valladares, C.E., W.B. Hanson, J.P. McClure, and B.L. Cragin,
Bottomside sinusoidal irregularities in the equatorial F region, J.
Geophys. Res., 88, 8025-8042, 1983.
Wanninger, L., Effects of the equatorial ionosphere on GPS, GPS World
(July), 48-54, 1993.
Whalen, J.A., An equatorial bubbles: Its evolution observed in relation
to bottomside spread F and to the Appleton anomaly, J. Geophys.
Res., 105, 5303-5315, 2000.
Woodman, R.F., and C.L. Hoz, Radar observations of F region
equatorial irregularities, J. Geophys. Res., 81, 5447-5466, 1976.
Woodman, R.F., and S. Basu, Comparison between in-situ spectral
measurements of equatorial F-region irregularities and backsactter
observations at 3 m wavelength, Geophys. Res. Lett., 5, 869-872,
1978.
Zalesak, S.T., and S.L. Ossakow, Nonlinear equatorial spread F:
Spatially large bubbles resulting from large horizontal scale initial
perturbations, J. Geophys. Res., 85, 2131–2142, 1980.
Zalesak, S.T., S.L. Ossakow, and P.K. Chaturvedi, Nonlinear equatorial
spread F: The effect of neutral winds and background pedersen
conductivity, J. Geophys. Res., 87, 151-166, 1982.
Zarraoa, N., and E. Sardón, Test of GPS for permanent ionospheric
TEC monitoring at high latitudes, Ann. Geophys., 14, 11-19, 1996.
周雪燕, 中性氣體風場對赤道區域電離F 層電漿密度不規則結構之
模擬研究, 國立中央大學大氣物理研究所博士論文, 中壢, 1995.
蔡和芳, 全球定位系統觀測電離層全電子含量, 國立中央大學太空
科學研究所碩士論文, 中壢, 1995.
蔡和芳, 全球定位系統觀測電離層赤道異常之研究, 國立中央大學
太空科學研究所博士論文, 中壢, 1999.