| 研究生: |
陳柏維 Bo-Wei Chen |
|---|---|
| 論文名稱: |
電動車鋰電池模組冷卻之模擬 |
| 指導教授: | 吳俊諆 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 電動車 、鋰電池模組 、NTGK經驗模型 、空氣冷卻法 、直接液體冷卻法 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來電動車的發展受到相當重視,電動車主要以鋰電池為動力來源,故電動車內鋰電池模組的散熱對電動車性能的影響巨大,本文建立三維的鋰電池模組以ANSYS FLUENT內建的NTGK經驗模型模擬鋰電池的熱流特性,分析二種冷卻方法對鋰電池模組的影響。
本文使用的冷卻方法是空氣冷卻法與直接液體冷卻法,模擬在不同冷卻流體流速下對鋰電池模組溫度場的變化,結果顯示當空氣流速由2 m/s提升至10 m/s時,放電結束時的鋰電池模組平均溫度由312 K降至304 K,而礦物油流速由0.001 m/s提升至0.005 m/s時,放電結束時的鋰電池模組平均溫度由313 K降至303 K;而在相同的冷卻流體質量流率下,直接液體冷卻法擁有較好的冷卻效果且理想功率損耗低。以質量流率0.94 g/s為例,鋰電池放電結束時,鋰電池模組使用直接液體冷卻法比起空氣冷卻法還低於3.7 K;鋰電池模組上升相同溫度的情況下,直接液體冷卻法的的理想功率損耗極低,約只有空氣冷卻法理想功率的0.1%。
In recent years, development of electric vehicles have been advanced intensively. The lithium-ion battery (LIB) is the driving power for the electric vehicle and the cooling of LIB module is important for the performance of electric vehicles. This study developes a three-dimensional LIB model and uses the ANSYS FLUENT built-in NTGK empirical model to simulate the thermal flow characteristics of LIB module.
This study uses two cooling methods (air cooling and direct liquid cooling) to simulate the temperature variation of LIB module. The modeling results show that when air flow rate increases from 2 m/s to 10 m/s, average temperature of the LIB module decreases from 312 K to 304 K at the end of the battery discharge. For the case of liquid cooling, when mineral oil flow rate increases from 0.001 m/s to 0.005 m/s, average temperature of the module decreases from 313 K to 30 K at the end of the battery discharge. The direct liquid cooling method has better cooling effect and lower power consumption under the same mass flow rate. For example, when mass flow rate is 0.94 g/s, the temperature at the end of the discharge of LIB with the direct liquid cooling method is 3.7 K lower than that of air cooling method. The ideal power loss of the direct liquid cooling method is very low under the same temperature rise of the LIB module, only about 0.1% of the ideal power loss of the air cooling method.
ANSYS, (2015) ANSYS FLUENT theory guide, ANSYS, Inc.
ANSYS, (2015) ANSYS FLUENT user’s guide, ANSYS, Inc.
Bandhauer, T. M. Garimella, S. & Fuller, T. F. (2011) A critical review of thermal issues in lithium-ion batteries, J. Electrochemical Soc., 158 (3):1-25.
Chen, D., Jiang, J., Kim, G., Yang, C. & Pesaran, A. (2016) Comparison of different cooling methods for lithium ion battery cells, Applied Thermal Engineering, 94:846-854.
Chen, M., Gabriel, A., Rincon-Mora, (2006) Accurate electrical battery model capable of predicting runtime and I–V performance, IEEE Trans. Energy Convers., 21(2):504-511.
Doyle, M., Fuller, T. F. & Newman, J. (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, J. Electrochemical Soc., 140(6):1526-1533.
Kim, U. S., Yi, J., Shin, C. B., Han, T. & Park, S. (2011) Modeling the dependence of the discharge behavior of a lithium-ion battery on the environmental temperature, J. Electrochemical Soc., 158(5):611-618.
Kwon, K. H., Shin, C. B., Kang, T. H. & Kim, C. (2006) A two-dimensional modeling of a lithium-polymer battery, J. Power Sources, 163:151-157.
Scrosati, B., Garche, J. & Tillmetz, W. (2015) Advances in Battery Technologies for Electric Vehicles, Elsevier.
Xu, X. M. & He, R. (2013) Research on the heat dissipation performance of battery pack based on forced air cooling, J. Power Sources, 240:33-41.
Yi, J., Koo, B. & Shin, C. B. (2014) Three-dimensional modeling of the thermal behavior of a lithium-ion battery module for hybrid electric vehicle applications, Energies, 7:7586-7601, ASME FED, 217, Separated and Complex Flows.