| 研究生: |
莊政達 Cheng-Ta Chuang |
|---|---|
| 論文名稱: |
被動動力設計之雙足機器人 Design and implementation of a biped robot with passive knee joints |
| 指導教授: |
王文俊
Wen-June Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 被動 、雙足機器人 、數位訊號處理器 |
| 外文關鍵詞: | digit signal processor, biped robot, passive |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雙足機器人發展至今,不自然的機械步態依然沒有多大改變,且關節處都需要驅動器來提供動力,所以在耗能上是相當大的,若要做出更流暢的步行動作,其動作規畫與控制複雜度就越高。基於這些問題,本論文的雙足機器人,使用被動動力設計的概念,依靠重力、慣性、AI 馬達來提供動力,其膝蓋無驅動動力,僅提供可控制的電磁鎖,行走時運用馬達帶動上半身左右偏擺,配合腳踝馬達拉往側方的機制,藉此產生行走時所需的重心偏移,小腿則經由大腿連動產生的慣性向前踢出,以類似人類行走步態的方式,不需仰賴所有關節的馬達,在準確時間點做出控制,只需對必要的驅動器控制即可,對於控制和計算的複雜度可以降低,能量的消耗也能較其他類型步行機器人低。論文的雙足機器人,站立時高約90cm、重約4Kg,共有9 個自由度,以 PC-Based 為初期的開發架構,經由 RS-232 控制 AI 馬達建構行走策略,最後在以 DSP 將系統晶片化,達成獨立行走的目標,實現高效率和自然擺動的雙足機器人系統。
A biped robot has been developed for a long time and it still doesn’thave much change of the unnatural machine gait. It consumes a lot of energy because all joints are needed actuators to act. However, it will be more complicated if we want the robot to walk smoothly. For this reason, the biped robot we design uses the concept of passive dynamic walking.The knees of the robot have no actuators but only controllable latches and the robot can walk by gravity, inertial force and the AI motors. The upper body of the robot will swing when it walks forward and have COG shifted by pulling of motor on the ankle. The calf can kick out by the inertial force. It can walk like human being without motors of all joints, and we can only control the necessary actuators at the right timing to make the complication of control and calculations lower. It also consumes less energy compare to other similar robots. The robot which is 90 cm tall, 4kg weight has 9 internal degrees of freedom. At first, we use computer to develop whole system and design control strategy by controlling AI motor through RS-232. Finally, we transfer the system to DSP to let the robot stand alone and have achievement of high-efficiency with natural swing of a biped robot system.
[1] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive-dynamic walkers,” Science, vol. 307, no.5712, pp. 1082 -1085, 2005.
[2] C. L. Golliday, Jr., and H. Hemani “An approach analyzing biped locomotion dynamics and designing robot locomotion control,” IEEE Transactions on Automation Control, vol. 22, no. 6, pp. 963-972,1977.
[3] F. Miyazaki and S. Arimotr, “A control theoretic study on dynamical biped locomotion,” ASME. Journal of Dynamic Systems,Measurement and Control, vol. 102, pp. 233-239, 1980.
[4] K.Loffler, M. Gienger, and F. Pfeiffer, “Sensors and control concept of a biped robot,” IEEE Transactions on Industrial Electronics, vol.51, No. 5, Oct 2004.
[5] K. Erbatur, A. Okazaki, and K. Obiya, T. Takahashi, A. Kawamura,“A study on the zero moment point measurement for biped walking robots,” Advanced Motion Control, pp. 431–436, July 2002.
[6] L. Wei, H. Wang, and Y. Li, “Robust trajectory control for robot,”Intelligent Control and Automation, vol. 6, pp. 4927–4929, 2004.
[7] C. Zhu, M. Okamura, and A. Kawamura, Y. Tomizawa,“Experimental approach for high speed walking of biped robot MARI-1,” Advanced Motion Control, pp. 427–432, Mar 2004.
[8] T. McGeer, “Passive dynamic walking,” International Journal of Robotics Research, vol. 9, no. 2, pp. 62-82, 1990.
[9] M. J. Coleman, “A stability study of a three-dimensional passive-dynamic model of human gait”, Ph.D. thesis, Cornell University 1998.
[10] D. Kuo, “Energetics of actively powered locomotion using the simplest walking model,” Journal of Biomechanical Engineering, vol.124, pp.113-120, 2002.
[11] K. Ono, R. Takahashi, A. Imadu, and T. Shimada , “Self-excitation control for biped walking mechanism,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp 1143-1148,2000.
[12] S.H.Collins and A. Ruina, “ A bipedal walking robot with efficient and human-like gait,”IEEE International Conference on Robotics and Automation , pp1983-1998 , 2005.
[13] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of biped locomotion,” IEEE Transactions on Biomedical Engineering, vol. 21, no. 2, pp. 102–108, 1974.
[14] F.R. Sias, Jr. and Y.F. Zheng, “How many degrees-of-freedom does a biped need?” IEEE International Workshop on Intelligent Robots and Systems , vol. 1, pp 297-301, 1990.
[15] M. Inaba, F. Kanehiro, S. Kagami, and H. Inoue, “Two-armed bipedal robot that can walk, roll over and stand up,” Intelligent Robots and Systems, vol. 3, pp. 297–302, 1995.
[16] 范逸之、江文賢、陳立元 ,C++ Builder 與RS-232 串列通訊,文魁資訊, 2004。
[17] 晉茂林 著 國立編譯館主編, 機器人學,五南圖書出版有限公司,2000。
[18] 修伊特 著 蔡坤憲 譯 , 觀念物理II 轉動力學- 萬有引力 ,天下遠見出版股份有限公司,2001。
[19] Delft 機器人之網站http://mms.tudelft.nl/dbl/research/biped/Denise/
[20] Cornell 機器人之網站http://ruina.tam.cornell.edu/research/topics/
locomotion_and_robotics/papers/efficient_bipedal_robots/index.htm
[21] ASIMO 之網站http://www.honda.com/ASIMO
[22] PINO 之網站 http://www.simbio.jst.go.jp/PINO
[23] KHR-3 之網站http://ohzlab.kaist.ac.kr/robot/khr-3_spec.html
[24] Delft 機器人之網站http://mms.tudelft.nl/dbl/research/biped/Mike/
[25] Megarobotics 之網站 http://www.megarobotics.com/en_main.htm