跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林芸萱
YUN-HSUAN LIN
論文名稱: 二維影像融合用於BSDF與配光曲線之研究
Study of 2D Image Fusion for BSDF and Goniophotometry
指導教授: 孫慶成
Ching-Chern Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 94
中文關鍵詞: 配光曲線雙向散射分佈函數屏幕複合式全場域光度儀全場域光強分佈
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 屏幕複合式全場域光度儀改善市售之儀器量測耗時的缺點,其利用相機一次擷取大範圍之光形分佈,再結合旋轉台轉動待測物改變不同拍攝角度,就能夠透過影像融合系統整合所有拍攝到的影像,取得待測光源的全場域光強分布,再加上額外照射光源並旋轉待測物以改變入射角便能獲雙向散射分佈函數量測結果。
    本文為了使機台能夠同時量測配光曲線,對系統進行改良,增加遠場距離達50公分。為了能夠降低機台體積,將機構改良成旋轉待測物與光源,並使屏幕大小為601×496 (mm2),在屏幕大小不變的情況下,相對應的必須增加拍攝張數,因此本文提出了半場域量測時的拍攝張數的最佳化解決方案,並且在同一機台上實現了雙向散射分佈函數與配光曲線的量測,其中配光曲線的待測物大小在單一維度可達5公分。


    Screen image synthetic whole-field optical distribution meter overcomes the shortcoming of time consuming of goniophotometer in the current market. It use camera to capture a wide range of light distribution with only one shot. By using rotator to change the picturing aspect, we can synthesize the whole images with aid of image fusion system to form the whole field optical distribution. Moreover, we add light source to illuminate the sample, and rotate the sample to change incident angle to obtain the BSDF measurement result.
    In this thesis, in order to measure the optical distribution and BSDF using one instrument. We increase the distance between the sample and the camera up to 50 cm. Besides, in order to reduce the volume of the instrument, the screen size is set as 601×496 (mm2), and the rotational part is the sample with light source instead of the imaging system. Since the screen size is limited, the total number of pictures is increased to cover the whole field. Here, we proposed an optimized solution to minimize the total number of pictures in semi-sphered field measurement. BSDF measurement and whole field optical distribution measurement distribution are accomplished with one instrument. The size of the light source in one dimension for the whole field optical distribution measurement achieve 5 cm.

    目錄 摘要 I Abstract II 致謝 IV 目錄 VI 圖片目錄 IX 表格目錄 XIII 第一章 緖論 1 1-1 散射學之發展 1 1-2 研究動機與目的 2 1-3 論文大綱 5 第二章 原理介紹 7 2-1 輻射學(Radiometry) 7 2-1-1 餘弦三次方定理(Cosine-third law) 13 2-1-2 餘弦四次方定理(Cosine-fourth law) 14 2-2 相關性係數(NCC) 15 2-3 光的散射行為 15 2-4 雙向散射分佈函數(BSDF) 17 第三章 尺寸限制條件 19 3-1 遠場距離 19 3-2 待測物尺寸限制 20 3-3 結論 22 第四章 影像融合系統 23 4-1 系統基本架構 23 4-2 系統模擬 33 4-3 能量修正 37 4-3-1 餘弦三次方修正 37 4-3-2 屏幕散射與鏡頭暈影之校正 38 4-4 驗證系統 40 4-5 優化系統 44 4-6 結論 48 第五章 半場域與全場域分析 49 5-1 半場域散射光分佈 49 5-2 全場域散射光分佈 55 5-3 結論 60 第六章 量測結果比較 61 6-1 腳踏車頭燈 61 6-2 多功能性LED照明模組L-type 64 6-3 結論 67 第七章 結論 68 參考文獻 70 中英文名詞對照表 73

    [1] J. C. Stover, Optical scattering measurement and analysis (McGraw-Hill , 1990).
    [2] A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533-535 (1981).
    [3] H. C. van de Hulst, Light scattering by small particles (Dover, 1981).
    [4] C. F. Bohren, D. Huffman, Absorption and scattering of light by small particles (John Wiley, 1983).
    [5] P. S. Heckbert, “Simulating global illumination using adaptive meshing,” Ph.D thesis, University of California, Berkeley (1991).
    [6] F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767 (1965).
    [7] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis, Geometric Considerations and Nomenclature for Reflectance (U.S. Dept. Commerce, Washington, D.C., NBS Monograp 160, 1977).
    [8] Commission International de l’Eclairage, Radiometric and photometric characteristics of materials and their measurement, 2nd Edition (CIE 38(TC-2.3), 1977).
    [9] M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics, Volume Ⅱ (McGraw-Hill, 1911).
    [10] C. N. Kurtz, “Transmittance characteristics of surface diffusers and the design of nearly band-limited binary diffusers”, J. Opt. Soc. Am. 62, 982-989 (1972).
    [11] P. F. Gray, “A method of forming optical diffusers of simple known statistical properties”, Opt. Acta 25, 765-775 (1978).
    [12] W. N. Partlo and W. G. Oldham, “Diffuser speckle model:application to multiple moving diffusers,” Appl. Opt. 32, 3009-3014 (1993).
    [13] L. G. Shirley and N. George, “Diffuser radiation patterns over a large dynamic range. 1: strong diffusers,” Appl. Opt. 27, 1850-1861 (1988).
    [14] W. N. Partlo and W. G. Oldham, “Diffuser speckle model:application to multiple moving diffusers,” Appl. Opt. 32, 3009-3014 (1993).
    [15] M. Bjuggren, L. Krummenacher, and L. Mattsson, “Infrared diffuser for application in transmission and reflection at 10.6um,” Appl. Opt. 36, 940-948 (1997).
    [16] E. Wolf, “Coherence of two interfering beams modulated by a uniformly moving diffuser,” J. Mod. Opt. 47, 1569-1573 (2000).
    [17] M. Parikka, T. Kaikuranta, P. Laakkonen, J. Lautanen, J. Tervo, M. Honkanen, M. Kuittinen, and J. Turunen, “Deterministic diffractive diffusers for display,” Appl. Opt. 40, 2239-2246 (2001).
    [18] H. M. Escamilla, E. R. Méndez, and E. I. Chaikina, “Nonreciprocal effects in the double passage of light through a random diffuser and a birefringent crystal,” J. Opt. Soc. Am. 18, 1122-1131 (2001).
    [19] T. Shirai and E. Wolf, “Transformation of coherence and of the spectrum of light by a moving diffuser,” J. Mod. Opt. 48, 717-727 (2001).
    [20] S. L. Kim, Y. S. Choi, Y. N. Ham, C. Y. Park, and J. M. Kim, “Holographic diffuser by use of a silver halide sensitized gelatin process,” Appl. Opt. 42, 2482-2491 (2003).
    [21] M. Trentacoste, W. Heidrich, L. Whitehead, H. Seetzen, and G. Ward, “Photometric image processing for high dynamic range displays,” J. Vis. Commun. Image Represent. 18, 439–451 (2007).
    [22] C. C. Sun, I. Moreno, S. H. Chung, W. T. Chien, C. T. Hsieh, and T. H. Yang, “Brightness management in a direct LED backlight for LCD TVs,” J. Soc. Inf. Disp. 16, 519-526 (2008).
    [23] G. Park, Y. G. Kim, J. H. Yi, and J. H. Kwon, “Enhancement of the optical performance by optimization of optical sheets in direct-illumination LCD backlight,” J. Opt. Soc. Korea 13, 152-157 (2009).
    [24] S. H. Baik, S. K. Hwang, Y. G. Kim, G. Park, and J. H. Kwon, “Simulation and fabrication of the cone sheet for LCD backlight application,” J. Opt. Soc. Korea 4, 478-483 (2009).
    [25] H. F. Chen, T. H. Ha, J. H. Sung, H. R. Kim, and B. H. Han, “Evaluation of LCD local-dimming-backlight system,” J. Soc. Inf. Disp. 18, 57-65 (2010).
    [26] M. A. Greiner, B. D. Duncan, and M. P. Dierking, “Bidirectional scattering distribution functions of maple and cottonwood leaves,” Appl. Opt. 46, 6485-6494 (2007).
    [27] F. B. Leloup, S. Forment, P. Dutré, M. R. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47, 5454-5467 (2008).
    [28] C. Qi, H. Liu, Y. Wei, and J. Dai, “Design and experimental research of angle self-compensation setup for BSDF measurement,” Chin. Opt. Lett. 7, 403-406 (2009).
    [29] Yeh-Wei Yu, Yen-Lin Chen, Wei-Hsin Chen, Hen-Xiang Chen, Xuan-Hao Lee, Che-Chu Lin, and Ching-Cherng Sun, “Bidirectional scattering distribution function by screen imaging synthesis,” Opt. Express 20, 1268-1280 (2012).
    [30] 陳彥霖,新型散射元件全場域光場量測之研究,國立中央大學照明與顯示科技研究所碩士論文,中華民國一百年。
    [31] V. N. Mahajan, Optical Imaging and Aberrations, Part Ι Ray Geometrical Optics (SPIE PRESS , 1998).
    [32] J. M. Palmer, Barbara Geri Grant, The art of radiometry (SPIE, 2009).
    [33] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
    [34] C. H. Tien, and C. H. Hung, “An iterative model of diffuse illumination from bidirectional photometric data,” Opt. Express 17, 723–732 (2009).
    [35] C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of LEDs,” Opt. Express 17, 13918–13927 (2009).
    [36] Breault Research Organization, http://www.bro.com/.

    QR CODE
    :::