| 研究生: |
黃致翔 Chih-hsiang Huang |
|---|---|
| 論文名稱: |
利用變溫及變壓吸附捕獲電廠煙道氣中二氧化碳之模擬 |
| 指導教授: |
周正堂
Cheng-tung Chou 楊閎舜 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 變溫吸附 、二氧化碳 、煙道氣 、變壓吸附 |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以透過變溫及變壓吸附分離程序處理發電後所產生之煙道氣作為吸附設備模擬的對象(15.03% CO2和84.97% N2),所使用的吸附劑為依台電綜合研究所配方製備的聚苯胺固態CO2吸附劑,目的為將二氧化碳濃縮(>90%)回收,以利之後儲存並減少二氧化碳排放至大氣中,減少溫室氣體的排放。
模擬程式中使用了method of lines結合upwind differences和cubic spline approximation,再以ODEPACK套裝軟體中之LSODE程式對時間作積分,估計出下段時間的濃度、溫度及壓力,之後一直重複循環計算到系統達到週期性穩態為止。
本研究使用了四種不同的吸附分離程序,分別為單塔五步驟變溫吸附程序、單塔兩步驟變壓吸附程序、單塔三步驟變壓吸附程序和雙塔六步驟變壓吸附程序。最佳的操作條件是由經過不同的操作變因探討後得到的,例如:吸脫附溫度、進料壓力、塔長及步驟時間等。
經過變因探討後得到的最佳程序為單塔三步驟變壓吸附程序,最佳操作條件為進料壓力6.0 atm、同向減壓壓力1.0 atm、逆向減壓壓力0.1 atm、塔長 98.3 cm、進料時間1200 s、同向減壓時間10 s及逆向減壓時間500 s。在此條件下其結果為二氧化碳濃度97.13%,回收率87.26%。捕捉每噸二氧化碳所需能耗為1.39 GJ/tonCO2。
In this simulation study, several adsorption process is utilized to separate CO2 and N2 from the power plant flue gas(15.03% CO2和84.97% N2) with solid polyaniline sorbent. CO2 can be recovered and sequestrated to reduce green- house-gas effects.
The method of lines is utilized, combined with upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state.
Four different processes have been used in this study, single-bed five-step temperature swing adsorption (TSA) process, single-bed two-step pressure swing adsorption (PSA) process, single-bed three-step PSA process and dual-bed six-step PSA process. The optimal operating condition is obtained by varying the operating variables, such as adsorption temperature, desorption temperature, feed pressure, bed length, step time, etc.
After the variables discussion, the best process is single-bed three-step PSA process and the best operating condition is feed pressure 6.0 atm, cocurrent depressurization pressure 1.0 atm, vacuum pressure 0.1 atm, bed length 98.3 cm and step time at 1200, 10 and 500 s. The results of the best operating condition are 97.13% purity and 87.26% recovery of CO2 with an energy consumption of 1.39 GJ/tonCO2.
[1] C.W. Skarstrom, U.S. Patent 2,944,627 (1960), to Esso Research and Engineering Company.
[2] P. Guerin de Montgareuil and D. Domine, U.S. Patent 3,155,468 (1964), to Societe L’air Liquide, Paris.
[3] R. T. Yang, Gas Separation by Adsorption Processes, Imperial College Press., London, 1997.
[4] N.H. Berlin, U.S. Patent 3,280,536 (1966), to Esso Research and Engineering Company.
[5] G. Heinze, Belgian Patent 613,267 (1962), to Farbenfabriken Bayer A. G.
[6] D.E. Kowler and R.H. Kadlec, “The Optimal Control of a Periodic Adsorber: Part I. Experiment”, AIChE J., Vol. 18, pp. 1207-1212, 1972.
[7] T. Tamura, U.S. Patent 3,797,201 (1974), to T. Tamura, Tokyo, Japan.
[8] A. Furderer and E. Rudelstorfer, U.S. Patent 3,986,849 (1976), to Union Carbide Corporation.
[9] R. Kumar, W.C. Kratz, D.E. Guro, D.L. Rarig and W.P. Schmidt, “Gas Mixture Fractionation to Produce Two High Purity Products by Pressure Swing Adsorption”, Sep. Sci. and Technol., Vol. 27, pp. 509-522, 1992.
[10] D. Diagne, M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes-Application to Carbon-Dioxide Removal and Enrichment”, J. Chem. Eng. Japan, Vol. 27, pp. 85-89, 1994.
[11] B.K. Na, K.K. Koo, H. Lee and H.K. Song, “Effect of Rinse and Recycle Methods on The Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Ind. Eng. Chem. Res., Vol. 41, pp. 5498-5503, 2002.
[12] C.H. Lee, J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA For Coke Oven Gas”, AIChE J., Vol. 45, pp. 535-545, 1999.
[13] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, “Capture of CO2 From Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swing Adsorption”, Adsorption, Vol. 14, pp. 575-582, 2008.
[14] J.G. Jee, M.B. Kim and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures”, Ind. Eng. Chem. Res., Vol. 40, pp. 868-878, 2001.
[15] Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of Dual-Bed Pressure Swing Adsorption For CO2 Recovery from Boiler Exhaust Gas”, Separation and Purification Technology, Vol. 24, pp. 519-528, 2001.
[16] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., Vol. 17, pp. 335-342, 1971.
[17] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in The Model System CO2 in He(I)”, Chem. Eng. Sci., Vol. 27, pp. 1449-1458, 1972.
[18] E. Glueckauf and J.I. Coates, “Theory of Chromatography, Part IV: The Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation”, J. Chem. Soc., pp. 1315–1321, 1947.
[19] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, Vol. 16, pp. 114-119, 1983.
[20] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., Vol. 41, pp. 1333-1343, 1986.
[21] R.T. Yang and S.J. Doong, “Gas Separation by Pressure Swing Adsorption: A Pore- Diffusion Model for Bulk Separation”, AIChE J., Vol. 31, pp. 1829–1842, 1985.
[22] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., Vol. 32, pp. 397-410, 1986.
[23] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., Vol. 33, pp. 1045-1049, 1987.
[24] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., Vol. 42, pp. 2037-2043, 1987.
[25] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., Vol. 45, pp. 107-115, 1990.
[26] N. Tlili, G. Grevillot and C. Vallieres, “Carbon Dioxide Capture and Recovery by means of TSA and/ or VSA”, Int. J. Greenhouse Gas Control, Vol. 3, pp. 519-527, 2009.
[27] M.G. Plaza, S. Garcia, F. Rubiera, J.J. Pis, C. Pevida, “Post-combustion CO2 Capture with a Commercial Activated Carbon: Comparison of Different Regeneration Strategies”, Chem. Eng. J., Vol. 163, pp. 41-47, 2010.
[28] B. Dutcher, H. Adidharma and M. Radosz, “Carbon Filter Process for Flue-Gas Carbon Capture on Carbonaceous Sorbents: Steam-Aided Vacuum Swing Adsorption Option”, Ind. Eng. Chem. Res., Vol. 50, pp. 9696-9703, 2011.
[29] J. Mérel, M. Clausse and F. Meunier, “Carbon Dioxide Capture by Indirect Thermal Swing Adsorption Using 13X Zeolite”, Environ. Prog., Vol. 25, pp. 327–333, 2006.
[30] J. Mérel, M. Clausse and F. Meunier, “Experimental Investigation on CO2 Post- Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites”, Ind. Eng. Chem. Res., Vol. 47, pp.209–215, 2008.
[31] M. Clausse, J. Mérel and F. Meunier, “Numerical Parametric Study on CO2 Capture by Indirect Thermal Swing Adsorption”, Int. J. Greenhouse Gas Control, Vol. 5, pp. 1206- 1213, 2011.
[32] E.S. Kikkinides, R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., Vol. 32, pp. 2714–2720, 1993.
[33] K.T. Chue, J.N. Kim, Y.J. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., Vol. 34, pp. 591–598, 1995.
[34] M. Ishibashi, H.Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata and Y. Kageyama, “Technology for Removing Carbon Dioxide from Power Plant Flue Gas by the Physical Adsorption Method”, Energy Convers. Manage. Vol. 37, pp. 929–993, 1996.
[35] B.K. Na, K.K. Koo, H.M. Eum, H. Lee and H.K. Song, “CO2 Recovery from Flue Gas by PSA Process Using Activated Carbon”, Korean J. Chem. Eng., Vol. 18, pp. 220–227, 2001.
[36] V.G. Gomes and K.W.K. Yee, “Pressure Swing Adsorption for Carbon Dioxide Sequestration from Exhaust Gases, Separation and Purification Technology, Vol. 28, pp. 161–171, 2002.
[37] J.H. Park, H.T. Beum, J.N. Kim and S.H. Cho, “Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., Vol. 41, pp.4122–4131, 2002.
[38] D. Ko, R. Siriwardane and L.T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration”, Ind. Eng. Chem. Res., Vol. 42, pp. 339–348, 2003.
[39] D. Ko, R. Siriwardane and L.T. Biegler, “Optimization of Pressure Swing Adsorption and Fractionated Vacuum Pressure Swing Adsorption Processes for CO2 Capture”, Ind. Eng. Chem. Res., Vol. 44, pp. 8084–8094, 2005.
[40] S.P. Reynolds, A.D. Ebner and J.A. Ritter, “New Pressure Swing Adsorption Cycles for Carbon Dioxide Sequestration”, Adsorption, Vol. 11, pp. 531–536, 2005.
[41] S.P. Reynolds, A.D. Ebner and J.A. Ritter, “Stripping PSA Cycles for CO2 Recovery from Flue Gas at High Temperature Using a Hydrotalcite-Like Adsorbent”, Ind. Eng. Chem. Res., Vol. 45, pp. 4278–4294, 2006.
[42] G. Li, P. Xiao, P. Webley, J. Zhang, R. Singh and M. Marshall, “Capture of CO2 from High Humidity Flue Gas by Vacuum Swing Adsorption with Zeolite 13X”, Adsorption, Vol. 14, pp.415–422, 2008.
[43] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, “Capture of CO2 from Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swing Adsorption”, Adsorption, Vol. 14, pp. 575–582, 2008.
[44] J. Zhang, P.A. Webley and P. Xiao, “Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture from Flue Gas”, Energy Convers. Manage., Vol. 49, pp. 346–356, 2008.
[45] V. Mulgundmath and F.H. Tezel, “Optimisation of Carbon Dioxide Recovery from Flue Gas in a TPSA System”, Adsorption, Vol. 16, pp. 587-598, 2010.
[46] Z. Liu, C.A. Grande, P. Li, J. Yu and A.E. Rodrigues, “Multi-Bed Vacuum Pressure Swing Adsorption for Carbon Dioxide Capture from Flue Gas”, Separation and Purification Technology, Vol. 81, pp. 307-317, 2011.
[47] T.L.P. Dantsa, F.M.T. Luna, I.J. Silva Jr., A.E.B. Torres, D.C.S. de Azevedo, A.E. Rodrigues and R.F.P.M. Moreira, “Carbon Dioxide–Nitrogen Separation through Pressure Swing Adsorption”, Chem. Eng. J., Vol. 172, pp. 698-704, 2011.
[48] S.V. Sivakumar and D.P. Rao, “Modified Duplex PSA. 1. Sharp Separation and Process Intensification for CO2−N2−13X Zeolite System”, Ind. Eng. Chem. Res., Vol. 50, pp. 3426–3436, 2011.
[49] Martunus, Z. Helwani, A.D. Wiheeb, J. Kim and M.R. Othman, “In Situ Carbon Dioxide Capture and Fixation from a Hot Flue Gas”, Int. J. Greenhouse Gas Control, Vol. 6, pp. 179-188, 2012.
[50] J.M. Smith, H.C. Van Ness and M.M. Abbott, Chemical Engineering Thermodynamics, Sixth Edition, McGraw-Hill, New York, 2001.
[51] C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[52] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Second Edition, Wiley, New York, 2007.
[53] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., Vol. 3, pp. 222-227, 1965.
[54] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem. Res., Vol. 58, pp. 18-27, 1966.
[55] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Seventh Edition, McGraw-Hill Inc., New York, 2005.
[56] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill Inc., New York, 1954.