| 研究生: |
楊雅博 Yang, Ya-Po |
|---|---|
| 論文名稱: |
開發以非線性混頻器注入之兆瓦級二氧化碳雷射 Development of Terawatt-Class CO2 Laser Seeded with Nonlinear Mixer |
| 指導教授: |
汪治平
Jyhpyng Wang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 276 |
| 中文關鍵詞: | 二氧化碳 、皮秒 、兆瓦 、雷射 |
| 外文關鍵詞: | CO2, picosecond, terawatt, laser |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去二十年來,對雷射峰值功率的追求推動了強場物理與雷射核融合領域的進展,儘管多數成果仍集中於紫外至近紅外波段的固態雷射。雷射與電漿之間的交互作用不僅依賴聚焦強度,也仰賴雷射波長,因此為長波紅外光雷射—特別是二氧化碳 (CO2) 雷射—保留了獨特的研究利基。因其具備高有質動力、低電漿臨界密度與高電光轉換效率等優勢,使其成為粒子加速器與非熱平衡核融合等新興應用的有利選擇。然而,發展超快 CO2 雷射所面臨的一大挑戰是如何放大寬頻皮秒脈衝並同時抑制梳狀增益頻譜所引起的脈衝分裂。為此,本論文提出一種非線性種子注入的放大策略,可實現寬頻且近似單脈衝的放大。該方法基於創新的啾頻脈衝差頻 (CP-DFG),利用次奈秒 1338 奈米單頻脈衝與寬頻 1540 奈米啾頻脈衝在 BGGSe 晶體中進行差頻。經光柵壓縮後,此種子系統可穩定輸出超過 60 微焦耳 3 皮秒的 10.2 微米脈衝,穩定度為 3.4%-rms,飄移率為 0.5%/小時。這種優異的穩定性得益於高穩定電流驅動器與泵浦雷射。其中 1338 奈米的二極體泵浦 Nd:YAG 雷射可穩定輸出 400 皮秒 6 毫焦耳的單頻脈衝,穩定度為0.7%-rms 。 10 微米種子脈衝寬度經由克爾偏振旋轉、條紋相機單擊發量測,以及脈衝光譜分析加以驗證。數值模擬顯示,該種子脈衝可於 CO2 放大器中誘發功率增寬與動態增益飽和,有效抑制脈衝分裂。基於上述成果,本論文進一步設計並建構一具電子束維持放電的高氣壓 CO2 放大器,並以 100 千伏級脈衝源驅動電子束。儘管該放大器仍在建構階段,本研究已為邁向亞洲首座兆瓦級 CO2 雷射系統奠定了堅實的基礎。
Pursuit of ever-increasing peak power in laser systems over the past two decades has led to remarkable advances in high-field physics and laser fusion, though much of this progress has centered around solid-state gain media and ultraviolet to near-infrared wavelengths. Applications involving laser–plasma interactions rely not only on the focused intensity but also on the laser wavelength. This leaves a niche for long-wavelength infrared (LWIR) lasers—particularly carbon dioxide (CO2) lasers—due to their large ponderomotive force, low plasma critical density, and high wall-plug efficiency. A major challenge in advancing ultrafast CO2 laser system lies in amplifying broadband picosecond pulses without pulse splitting caused by the comb-like gain spectrum. To overcome this challenge, a nonlinear-seeded amplification strategy that enables broadband quasi-single-pulse amplification is presented in this thesis. This approach involves the development of an energetic seed source based on a novel chirped-pulse difference-frequency generation (CP-DFG) scheme, where sub-nanosecond single-frequency 1338-nm pulses and broadband chirped 1540-nm pulses are mixed in a BGGSe crystal. After compression, this system routinely delivers 3-ps 10.2-µm pulses exceeding 60 µJ with 3.4%-rms fluctuation and 0.5%/hr drift. This superior stability is attributed to the highly stable current drivers and pump lasers. For the 1338-nm diode-pumped Nd:YAG laser delivering 400-ps 6-mJ pulses, the energy stability is 0.7%-rms. Single-shot measurements based on Kerr-polarization rotation, resolved by a streak camera and pulse spectrum analysis, confirmed the picosecond pulse duration. Numerical modeling showed that such intense seeds can suppress pulse splitting via power broadening and dynamic gain saturation in CO2 amplifiers. On the basis of these results, this thesis presents the design and construction of a high-pressure electron-beam-sustained CO2 amplifier driven by a 100-kV-class pulser. While the amplifier is still under construction, this work establishes a solid foundation for realizing the first terawatt-class CO2 laser system in Asia.
References 1
[1] A. Einstein, “On the quantum theory of radiation,” Physikalische
Zeitschrift 18, 167–83 (1917).
[2] J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The maser—new type of
microwave amplifier, frequency standard, and spectrometer,” Physical
Review 99, 1264 (1955).
[3] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys-
ical Review 112, 1940 (1958).
[4] T. Maiman, “Optical and microwave-optical experiments in ruby,” Phys-
ical Review Letters 4, 564 (1960).
[5] P. Franken, A. E. Hill, C. e. Peters, and G. Weinreich, “Generation of
optical harmonics,” Physical Review Letters 7, 118 (1961).
[6] F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from
ruby,” Applied Optics 1, 103–105 (1962).
[7] W. E. Lamb Jr, “Theory of an optical maser,” Physical Review 134,
A1429 (1964).
[8] L. Hargrove, R. L. Fork, and M. Pollack, “Locking of He–Ne laser modes
induced by synchronous intracavity modulation,” Applied Physics Let-
ters 5, 4–5 (1964).
[9] S. A. Payne, L. K. Smith, R. J. Beach, B. H. Chai, J. H. Tassano, L. D.
DeLoach, W. L. Kway, R. W. Solarz, and W. F. Krupke, “Properties of
Cr:LiSrAlF6 crystals for laser operation,” Applied Optics 33, 5526–5536
(1994).
[10] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,”
Journal of the Optical Society of America B 3, 125–133 (1986).
[11] R. Ell, U. Morgner, F. X. K¨artner, J. G. Fujimoto, E. P. Ippen,
V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, et al.,
“Generation of 5-fs pulses and octave-spanning spectra directly from a
Ti: sapphire laser,” Optics Letters 26, 373–375 (2001).
[12] D. Strickland and G. Mourou, “Compression of amplified chirped optical
pulses,” Optics Communications 55, 447–449 (1985).
[13] C. Radier, O. Chalus, M. Charbonneau, S. Thambirajah, G. Deschamps,
S. David, J. Barbe, E. Etter, G. Matras, S. Ricaud, et al., “10 PW peak
power femtosecond laser pulses at ELI-NP,” High Power Laser Science
and Engineering 10, e21 (2022).
[14] S. M. Carroll, Spacetime and geometry (Cambridge University Press,
2019).
[15] D. Lai, “Matter in strong magnetic fields,” Reviews of Modern Physics
73, 629 (2001).
[16] G. Mourou, Extreme light physics and application (October, 2023).
[17] I. N. Duling III, “All-fiber ring soliton laser mode locked with a nonlinear
mirror,” Optics Letters 16, 539–541 (1991).
[18] J. Kerr, “XL. A new relation between electricity and light: Dielectrified
media birefringent,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science 50, 337–348 (1875).
[19] J. Wang, “Lecture notes: Fundamental Principles of Lasers and Ultra-
fast Optics,” (2000).
[20] E. Cumberbatch, “Self-focusing in non-linear optics,” IMA Journal of
Applied Mathematics 6, 250–262 (1970).
[21] H.-h. Chu, Construction of a 10-TW Laser of High Coherence and Sta-
bility and Its Application in Laser-Cluster Interaction and X-Ray Lasers,
Ph.D. thesis, National Taiwan University (2005).
[22] R. W. Boyd, Nonlinear Optics: Third Edition (Academic Press, 2008).
[23] The ARRL handbook for radio communications (American Radio Relay
League, 2012).
[24] H. A. Lorentz, The Theory of Electrons and Its Applications to the Phe-
nomena of Light and Radiant Heart: A Course of Lectures Delivered
in Columbia University, New York in March and April, 1906 , Vol. 29
(Teubner, 1916).
[25] R. Kubo, “Statistical-mechanical theory of irreversible processes. I. Gen-
eral theory and simple applications to magnetic and conduction prob-
lems,” Journal of the Physical Society of Japan 12, 570–586 (1957).
[26] L. Rayleigh, Theory of Sound, Vol. I (Dover, New York, 1945).
[27] N. Bloembergen, Nonlinear Optics (World Scientific, 1996), 4th edn.
[28] R. C. Miller, “Optical second harmonic generation in piezoelectric crys-
tals,” Applied Physics Letters 5, 17–19 (1964).
[29] M. Bass, P. Franken, J. Ward, and G. Weinreich, “Optical rectification,”
Physical Review Letters 9, 446 (1962).
[30] D. J. Griffiths, Introduction to Electrodynamics: Third Edition (Prentice
Hall., 1999).
[31] F. Arecchi and R. Bonifacio, “Theory of optical maser amplifiers,” IEEE
Journal of Quantum Electronics 1, 169–178 (1965).
[32] D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier
coefficients for congruently grown lithium niobate and 5 mol.% magne-
sium oxide–doped lithium niobate,” Journal of the Optical Society of
America B 14, 3319–3322 (1997).
[33] A. R. Zanatta, “The optical bandgap of lithium niobate (LiNbO3)
and its dependence with temperature,” Results in Physics 39, 105 736
(2022).
[34] M. Hobden and J. Warner, “The temperature dependence of the re-
fractive indices of pure lithium niobate,” Physics Letters 22, 243–244
(1966).
[35] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-
phase matched LiNbO3 waveguide periodically poled by applying an
external field for efficient blue second-harmonic generation,” Applied
Physics Letters 62, 435–436 (1993).
[36] V. Pasiskevicius, G. Str¨omqvist, F. Laurell, and C. Canalias, “Quasi-
phase matched nonlinear media: Progress towards nonlinear optical en-
gineering,” Optical Materials 34, 513–523 (2012).
[37] A. V. Smith, “How to select nonlinear crystals and model their per-
formance using SNLO software,” in Nonlinear Materials, Devices, and
Applications 3928, 62–69 (2000).
[38] A. Einstein, “Die Grundlagen der allgemeinen,” Relativit¨atstheorie, Annale der Physic 49, 769 (1916).
[39] M. Angell, R. Emerson, J. Hoyt, J. Gibbons, L. Eyres, M. Bortz, and
M. Fejer, “Growth of alternating <100>/<111>-oriented II-VI regions
for quasi-phase-matched nonlinear optical devices on GaAs substrates,”
Applied Physics Letters 64, 3107–3109 (1994).