跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡直謙
Chih-Chien Tsai
論文名稱: SoWMEX/TiMREX個案中雨滴粒徑分佈之收支分析
Budget Analysis of Drop Size Distribution: A Case Study during SoWMEX/TiMREX
指導教授: 陳台琦
Tai-Chih Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 97
語文別: 中文
論文頁數: 71
中文關鍵詞: 對流胞都卜勒雷達反演風場微物理西南氣流實驗雙偏極化收支分析雨滴粒徑分佈
外文關鍵詞: TiMREX, SoWMEX, microphysics, wind field, DSD, budget analysis, dual polarization, Doppler, radar, retrieval
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用雙偏極化都卜勒雷達,能反演空間中的三維風場和DSD。暖雨區內雨滴的成核、凝結、蒸發、結合和分裂都會改變DSD。除了微物理過程外,雨滴在空氣中的平流與沉降作用也是DSD的變因。若已知兩時間點的DSD與其間的三維風場,便可透過收支計算分離雨滴運動對DSD變化的影響,探討空間中的微物理機制。
      
      本研究分析個案為西南氣流實驗IOP-8期間,NCAR之SPOL雙偏極化都卜勒雷達朝高、屏外海執行密集扇形掃描時所觀測到的對流胞。資料處理流程包括雷達資料的內插、計算系統平均移速、修正觀測時間差、反演三維風場、反演DSD及計算對流胞各時期之收支方程。反演三維風場方面,使用Liou(2007)之單雷達風場反演方法。反演DSD方面,使用Brandes et al.(2003)之constrained gamma method。
      
      該對流胞演化過程分為三個時期,每個時期回波核心區域雨水含量之收支分析如下:在增強期時,全導數項所有粒徑之雨水含量都增加,推論結合與凝結為主要過程。在成熟期I時,全導數項小雨滴和大雨滴減少,中型雨滴增加,推論除凝結外,小雨滴以結合為主,大雨滴以分裂為主。在成熟期II時,全導數項所有粒徑之雨水含量維持穩定,推論各種微物理過程旗鼓相當。在衰減期時,全導數項所有粒徑之雨水含量都減少,懷疑為較乾空氣逸入所造成的蒸發作用。


      3-D wind and DSD can be retrieved using dual polarization Doppler radar data. In addition to warm-rain microphysical processes such as nucleation, condensation, evaporation, coalescence and breakup, advection and sedimentation also lead to variation of DSD. The DSD at two time steps and the 3-D wind between allow a budget analysis of the drop number concentration, separating microphysical and kinematic effects.
      
      This article analyzes a convective cell observed by NCAR’s SPOL radar when it performed intensive sector scans toward its south during IOP-8 of SoWMEX/TiMREX. The data processing steps include interpolating radar data, calculating the average system speed, correcting the observation time lag, retrieving 3-D wind, retrieving DSD and calculating the budget equation at different stages of the convective cell. The 3-D wind is recovered by the single-Doppler velocity retrieval method of Liou (2007). The DSD is retrieved by the constrained gamma method of Brandes et al. (2003).
      
      The evolution of the convective cell is divided into 3 stages, during which the budget analysis of rain water content in the reflectivity core is as follows. During the intensifying stage, the total derivative of rain water content is positive for all drop sizes, which infers coalescence and condensation are the dominant microphysical processes. During mature stage I, the total derivative is negative for small and big drops but positive for median ones, which infers, besides condensation, coalescence and breakup dominate for small and big drops respectively. During mature stage II, the total derivative is nearly zero for all sizes, which infers opposite microphysical processes are well-matched. During the dissipating stage, the total derivative is negative for all sizes, which results, in doubt, from evaporation due to entrainment of drier air.

    中文摘要………………………………………………………………i 英文摘要………………………………………………………………ii 致謝……………………………………………………………………iii 目錄……………………………………………………………………iv 圖表說明………………………………………………………………vi 符號說明………………………………………………………………ix    第一章 緒論……………………………………………………………1  1-1 前言……………………………………………………………1  1-2 文獻回顧………………………………………………………2  1-3 研究目的………………………………………………………4 第二章 資料來源………………………………………………………6  2-1 觀測儀器………………………………………………………6  2-2 分析個案………………………………………………………7 第三章 研究方法………………………………………………………9  3-1 內插至直角網格點……………………………………………10  3-2 計算系統平均移速……………………………………………10  3-3 修正觀測時間差………………………………………………12  3-4 反演三維風場…………………………………………………13  3-5 反演DSD………………………………………………………15  3-6 計算收支方程…………………………………………………16 第四章 個案分析……………………………………………………19  4-1 對流胞之增強期I……………………………………………19  4-2 對流胞之增強期II……………………………………………21  4-3 對流胞之成熟期I……………………………………………23  4-4 對流胞之成熟期II……………………………………………24  4-5 對流胞之衰退期I……………………………………………26  4-6 對流胞之衰退期II……………………………………………27 第五章 結論與未來展望……………………………………………30  5-1 結論……………………………………………………………30  5-2 未來展望………………………………………………………31    參考文獻………………………………………………………………33 附表……………………………………………………………………36 附圖……………………………………………………………………37

    Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570-573.
      
    Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band. J. Appl. Meteor., 16, 1322-1331.
      
    Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol., 2, 468-471.
      
    Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674-685.
      
    Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652-660.
      
    Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21, 584-598.
      
    Gal-Chen, T., 1982: Errors in fixed and moving frame of references: applications for conventional and Doppler radar analysis. J. Atmos. Sci., 39, 2279-2300.
      
    Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 3406-3413.
      
    Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 2373-2384.
      
    Liou, Y.-C., 1999: Single radar recovery of cross-beam wind components using a modified moving frame of reference technique. J. Atmos. Oceanic Technol., 16, 1003-1016.
      
    Liou, Y.-C., 2002: An explanation of the wind speed underestimation obtained from a least squares type single-Doppler radar velocity retrieval method. J. Appl. Meteor., 41, 811-823.
      
    Liou, Y.-C., 2007: Single-Doppler retrieval of the three-dimensional wind in a deep convective system based on an optimal moving frame of reference. J. Meteor. Soc. Japan, 85, 559-582.
      
    Liou, Y.-C., and I.-S. Luo, 2001: An investigation of the moving-frame single-Doppler wind retrieval technique using Taiwan Area Mesoscale Experiment low-level data. J. Appl. Meteor., 40, 1900-1917.
      
    Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166.
      
    Russchenberg, H. W. J., 1993: Doppler polarimetric radar measurements of the gamma drop size distribution of rain. J. Appl. Meteor., 32, 1815-1825.
      
    Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69-76.
      
    Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 1265-1287.
      
    Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three-dimensional wind and temperature fields from simulated single-Doppler radar data. J. Atmos. Sci., 48, 876-890.
      
    Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764-1775.
      
    Zhang, J., and T. Gal-Chen, 1996: Single-Doppler wind retrieval in the moving frame of reference. J. Atmos. Sci., 53, 2609-2623.
      
    Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841.
      
    Zrnic, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389-406.
      
    紀博庭,「利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究」,國立中央大學,碩士論文,民國94年。
      
    張偉裕,「利用雨滴譜儀分析雨滴粒徑分布:納莉颱風個案」,國立中央大學,碩士論文,民國91年。
      
    曾威仁,「雨滴粒徑分佈模擬─雙偏極化雷達驗證」,國立中央大學,碩士論文,民國96年。

    QR CODE
    :::