跳到主要內容

簡易檢索 / 詳目顯示

研究生: 歐陽長風
Cheng-Feng O-Yang
論文名稱: 一氧化碳背景值自動監測系統之架構
Construction of an automated analysis system for background level carbon monoxide
指導教授: 王家麟
Jia-Lin Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 92
語文別: 中文
論文頁數: 150
中文關鍵詞: 一氧化碳
外文關鍵詞: CO, carbon monoxide
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功開發一套低成本、且適用於一氧化碳和甲烷背景值量測之全自動化層析系統。利用程序控制器對分離管柱直接電阻式升控溫,避免了使用商品化氣相層析儀的必要,不僅大幅縮小了分析系統體積,並使系統建購的成本降低,其加熱方式直接且省電,更新了以往對於氣相層析分析系統構造的傳統觀念,對於偏遠無人測站之使用更為有所助益。
    實驗中利用鎳觸媒管的催化,將一氧化碳還原為甲烷,使高靈敏的火燄離子偵測器能藉此偵測一氧化碳,本研究中並修正了原本商品化鎳觸媒管的幾何構造,加強其對於分析一氧化碳時的表現。
    利用加裝於管柱後端的Heart-cut技術,在此具有雙重性功效,其不但能順利達成調理管柱的要求,使分析的狀態維持在最佳,並成功地將不必要的氧氣峰切除,除在層析上簡化了圖譜外,且讓一氧化碳和甲烷的解析能力增強,再者,由於此技術也可以令非分析物之其餘高沸點物質不流經鎳觸媒管,而使鎳觸媒被毒化的可能性降低,延長其壽命,強化了分析系統的長期穩定性。


    An automated gas chromatography system was constructed to perform in situ measurement of atmospheric carbon monoxide and methane at background levels. While methane can be detected directly by flame ionization detection (FID), carbon monoxide however needs to be methanized by a nickel catalyst under hydrogen provision in order to be detected by FID with adequate sensitivity. The catalyst bed was prepared by filling approximately 1 g of nickel oxide embedded silica in 1/8” x 10 cm stainless steel tubing and operated at 300 ?C.
    The design of the system involves several innovated features to save space, cost, and power consumption, pivotal to the deployment in an unattended remote monitoring station. First, the resistive heating directly on the molecular sieve packed column eliminates the need of a commercial gas chromatograph. Second, pressure feedback to the capacitance monometer and the slightly heated sample loop ensure precise air sample loading, which largely control the overall uncertainty of the methane and carbon monoxide measurement.
    Third, to prevent oxygen and heavy residuals from causing unwanted oxidizing reactions and contamination of the nickel catalyst the post-column heart-cut technique was used to safe-guard and prolong the service time of the nickel catalyst tube.

    中文摘要 I 英文摘要 II 謝誌 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 緣起 1 1-2 大氣氧化能力 11 1-3 大氣一氧化碳 15 1-4 一氧化碳分析方法回顧 23 1-5 影響台灣背景一氧化碳的排放來源26 1-6 研究動機 34 第二章 實驗方法 36 2-1 分析系統閥門組態 36 2-2 層析管柱的選擇 39 2-3 進樣壓力控制設計 39 2-4 層析管柱與樣品管之控溫設計 42 2-5 電腦時序控制軟體 44 2-6 鎳觸媒轉換器 45 2-7 火燄離子偵測器與訊號接收處理 48 2-8 管柱後端剪裁裝置 56 第三章 結果與討論 62 3-1 管柱後端剪裁裝置效益之討論 62 3-2 利用商業化鎳觸媒管進行一氧化碳之一週量測 78 3-3 自製鎳觸媒管與最佳化條件 82 3-4 分析管柱的選擇與最佳化 101 3-5 圖譜剪裁 107 3-6 分析流程的確立 114 3-7 系統穩定度 123 第四章 總結與未來展望 126 參考文獻 128

    [1] Chappellaz, J., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345, 127-131, 1990.
    [2] http://www.cmdl.noaa.gov/ccgg/gallery/index.php?currDir=./Data_Figures&pageType=image&image=ch4trend_global.jpg
    [3] http://www.cmdl.noaa.gov/ccgg/gallery/index.php?currDir=./Data_Figures&pageType=image&image=co2trend_global.jpg
    [4] http://www.unep.org/ozone/Treaties_and_Ratification/2B_montreal%20protocol.asp
    [5] http://www.nobel.se/chemistry/laureates/1995/illpres/
    [6] Slaper, H., G. J. M. Velders, J. S. Daniel, F. R. de Gruijl, and J. C. van der Leun, Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements, Nature 384, 256-258, 1996.
    [7] http://www.cmdl.noaa.gov/publications/annrpt26/5_2_1.pdf
    [8] Radian Corp., Control techniques for volatile organic emissions from stationary source, EPA-405/2-78-022, 1978.
    [9] Ryerson, T. B., M. Trainer, J. S. Holloway, D. D. Parrish, L. G. Huey, D. T. Sueper, G. J. Frost, S. G. Donnelly, S. Schauffler, E. L. Atlas, W. C. Kuster, P. D. Goldan, G. Hubler, J. F. Meagher, F. C. Fehsenfeld, Observations of ozone formation in power plant and implications for ozone control strategies, Science, 292, 719-723, 2001.
    [10] Stephens, E.R., The formation, reactions and properties of peroxyacetyl nitrates (PANs) in photochemical air pollution. Adv. Environ. Sci. Technol, 1, 119–146, 1969.
    [11] http://www.epa.gov.tw/F/evolve/AIR_ASSAY/INDEX_INDEX.HTM
    [12] Jacob, D. J., Oxidizing power of atmosphere, in Handbook of weather, climate, and water, edited by T. D. Potter and B. R. Colman, pp. 29-43, Wiley Interscience, 2003.
    [13] Finlayson-Pitts, B. J. and J. N. Pitts, Jr., Chemistry of the upper and lower atmosphere, Academic Press, 2000.
    [14] Madronich, S. and C. Granier, Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals, and methane trends, Geophys. Res. Lett., 19, 465-467, 1992.
    [15] Wayne, R. P. Chemistry of Atmospheres, Oxford University Press, 2000.
    [16] Mount, G. The measurement of tropospheric OH by long-path absorption, 1. Instrumentation, J. Geophys. Res., 97, 2427-2444, 1992.
    [17] Eisele, F. L. and D. J. Tanner, Ion-assisted tropospheric OH measurements, J. Geophys. Res., 96, 9295-9308, 1991.
    [18] Crosley, D. R. 1993 Tropospheric OH Experiment: a summary and perspective, J. Geophys. Res., 102, 6495-6510, 1997.
    [19] Singh, H. B. Atmospheric halocarbons: evidence in factor of reduced average hydroxyl radical concentration in the troposphere, Geophys. Res. Lett., 4, 101-104, 1977.
    [20] Lovelock, J. E. Methyl chloroform in the troposphere as an indicator of OH radical abundance, Nature, 267, 32, 1977.
    [21] 鄒慶源 以四氯乙烯及甲基氯仿觀測資料推估背景大氣中氫氧基濃度及其季節性變化, 碩士論文, 國立中央大學化學所, 1997.
    [22] Prinn, R. G., R. F. Weiss, P. J. Fraser, P. G. Simmonds, D. M. Cunnold, F. N. Alyea, S. O’Doherty, P. Salameh, B. R. Miller, J. Huang, G. Sturrock, P. M. Midgley and A. McCulloch, A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105, 17751-17792, 2000.
    [23] Lawrence, M. G., P. Jockel and R. von Kuhlmann, What does the global mean OH concentration tell us? Atmos. Chem. Phys., 1, 37-49, 2001.
    [24] Wuebbles, D. J. and K. Hayhoe, Atmospheric methane and global change, Ear. Sci. Rev., 57, 177-210, 2002.
    [25] Dlugokencky, E. J., L. P. Steele, P. M. Lang and K. A. Masarie, Atmospheric methane at Mauna Loa and Barrow observations: Presentation and analysis of in situ measurements, J. Geophys. Res., 100, 23103-23113, 1995.
    [26] Prinn, R. G., J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O’Doherty, R. H. J. Wang, L. Porter and B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, Science, 292, 1882-1888, 2001.
    [27] http://www.epa.gov/air/urbanair/6poll.html
    [28] Smith, K. R., Biofuels, air pollution, and health: a global review, Kluwer Academic Pub, 1987.
    [29] http://www.cmdl.noaa.gov/ccgg/gallery/index.php?currDir=./Data_Figures&pageType=image&image=corug.jpg
    [30] Hann, D., P. Martinerie, and D. Raynaud, Ice core data of atmospheric carbon monoxide over Antarctica and Greenland during the last 200 years, Geophys. Res. Lett., 23, 2235-2238, 1996.
    [31] Seinfeld, J. H., Atmospheric chemistry and physics of air pollution, 1986.
    [32] Fishman, J. and W. Seiler, Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget, J. Geophys. Res., 88, 3662-3670, 1983.
    [33] Cicerone, R. J., How has the Atmospheric Concentration of CO changed? The Changing Atmosphere, edited by F. S. Rowland and I. S. A. Isaksen, 49-61, 1988.
    [34] Levy, H., Normal atmosphere: Large radical and formaldehyde predicted, Science, 173, 141-143, 1971.
    [35] Logan, J. A., M. J. Prather, S. C. Wofsy, and M. B. McElroy, Tropospheric chemistry: A global perspective, J. Geophys. Res., 86, 7210-7254, 1981.
    [36] Warneck, P., Chemical changes of the atmosphere on geological and recent time scales, Global atmospheric chemical change, edited by C. N. Hewitt and W. T. Sturges, chap.1, Chapman & Hall, 1994.
    [37] Graebel, T. E., Chemical compounds in the atmosphere, 1978.
    [38] Thompson, A. M., The oxidizing capacity of the earth’s atmosphere: Probable past and future changes, Science, 256, 1157-1165, 1992.
    [39] Simpson, I. J., D. R. Blake, F. S. Rowland and T. Y. Chen, Implications of the recent fluctuations in the growth rate of tropospheric methane, Geophys. Res. Lett.,29, 117, 2002.
    [40] World Meteorological Organization (WMO), Global atmosphere watch measurements guide, edited by P. C. Novelli, pp. 23-24, 2001.
    [41] http://www.cmdl.noaa.gov/ccgg/gallery/index.php?currDir=./Data_Figures&pageType=image&image=cotrend_global.jpg
    [42] Cassidy, D. T. and J. Reid, Atmospheric pressure monitoring of trace gases using tunable diode lasers, Appl. Opt., 21, 1185-1190, 1982.
    [43] Sachse, G. W. and G. F. Hill, Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique, J. Geophys. Res., 92, 2071-2081, 1987.
    [44] 朱俊彥, 攜帶式二氧化碳偵測器新技術, 台灣環保產業雙月刊, 15, 8-9, 2003.
    [45] NIEA, 空氣中一氧化碳自動檢驗方法, 環署檢字第43007號公告, 1992.
    [46] Smith, R. N., J. Swinehart, and D. G. Lesnini, Chromatographic analysis of gas mixtures containing nitrogen, nitrous oxide, nitric oxide, carbon monoxide, and carbon dioxide, Anal. Chem., 30, 1217-1218, 1958.
    [47] Porter, K. and D. H. Volman, Flame ionization detection of carbon monoxide for gas chromatographic analysis, Anal. Chem., 34, 748-749, 1962.
    [48] Lopez, J. d. P., Seasonality and global growth trends of carbon monoxide during 1995-2001, Univ. of Calif., Irvine, 2002.
    [49] McCullough, J. D., R. A. Crane, and A. O. Beckman, Detection of carbon monoxide in air by use of red mercuric oxide, Anal. Chem., 19, 999-1002, 1947.
    [50] Novelli, P. C., V. S. Connors, H. G. Reichle, Jr., B. E. Anderson, C. A. M. Bernninkmeijer, E. G. Brunke, B. G. Doddridge, V. W. J. H. Kirchhoff, K. S. Lam, K. A. Masarie, T. Matsuo, D. D. Parrish, H. E. Scheel, and L. P. Steele, An internally consistent set of globally distributed atmospheric carbon monoxide mixing ratios developed using results from an intercomparison of measurements, J. Geophys. Res., 103, 19285-19293, 1998.
    [51] http://www.un.org/apps/news/storyAr.asp?NewsID=4432&Cr=asia&Cr1=environment
    [52] Tyson, P., R. Fuchs, C. Fu, L. Lebel, A. P. Mitra, E. Odada, J. Perry, W. Steffen, and H. Virji, Regional-global interactions in east Asia, Global-regional linkages in the earth system, edited by C. Fu, H. Harasawa, V. Kasyanov, J. W. Kim, D. Ojima, Z. Wan, S. Zhao, 109-149, 2002.
    [53] http://asd-www.larc.nasa.gov/biomass_burn/globe_impact.html
    [54] Turco, R. P., Earth under siege: from air pollution to global change, Oxford University Press, 2002.
    [55] Doddridge, B. G., R. R. Dickerson, T. G. Spain, S. J. Oltmans, and P. C. Novelli, Carbon monoxide measurements at Mace Head, Ireland, Ozone in the Troposphere and Stratosphere, edited by R. D. Hudson, NASA Conf. Publ. 3266, pp. 134-137, 1994.
    [56] Tang, Y., G. R. Carmichael, J. H. Woo, N. Thongboonchoo, G. Kurata, I. Uno, D. G. Streets, D. R. Blake, R. J. Weber, R. W. Talbot, Y. Kondo, H. B. Singh and T. Wang, The influences of biomass burning during Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model, J. Geophys. Res., 108(D21), 8824, doi:10.1029/2002JD003110, 2003.
    [57] Jacobson, M. Z., Atmospheric pollution: History, science and regulation, Cambridge University Press, 2002.
    [58] http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=4894
    [59] Wang, J. L., S. R. Kuo, S. S. Ma and T. T. Chen, Construction of a low-cost automated chromatographic system for measurement of ambient methane, Anal. Chim. Acta., 448, 187-193, 2001.
    [60] Skoog, D. A., D. M. West, and F. J. Holler, Fundamentals of analytical chemistry, 7th Ed., 1996.
    [61] Skoog, D. A., F. J. Holler and T. A. Nieman, Principles of instrumental analysis, 5th Ed., 1998.
    [62] Scanlon, J. T. and D. E. Willis, Calculation of flame ionization detector relative response factors using the effective carbon number concept, J. Chromatogr. Sci., 23, 333-340, 1985.
    [63] Gates, B. C. Catalytic chemistry, 1991.
    [64] Fitzharris, W. D., J. R. Katzer and W. H. Manogue, J. Catal., 76, 369, 1982.

    QR CODE
    :::