| 研究生: |
吳維庭 Wei-ting Wu |
|---|---|
| 論文名稱: |
準共光程外差光柵干涉術之研究 Study of quasi-common optical path heterodyne grating interferometry |
| 指導教授: |
李朱育
Ju-yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 位移量測 、光學量測 、共光程 、外差干涉術 、光柵干涉術 |
| 外文關鍵詞: | heterodyne interferometry, grating interferometry, displacement measurement, optical measurement, common optical path |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種以光學干涉為基礎的新式位移量測技術-準共光程外差光柵
干涉術。由於結合了外差光柵干涉術與準共光程光路的設計,本項技術具有精密
的位移量測能力並且可以有效排除外部雜訊。外差干涉術是一種將待測信息載入
至光相位的量測方式,而光柵的繞射效應可將光柵的位移信息有效地轉換成光相
位改變。本研究利用氦氖雷射與電光調制器產生外差光源,經過準共光程光路設
計聚焦至高密度光柵,當光柵產生位移將會引入相位變化至各階繞射光,並且使
不同階數繞射光疊合產生干涉。透過鎖相放大器抓取外差光源的相位變化,即可
經由公式計算,進而獲得光柵位移情況。
根據理論推導,本系統的理論解析度優於3 pm。實驗結果分析,在電子雜訊
影響下,系統的實際解析度可以達到1.3 nm,量測準確度優於3.7 nm,靈敏度為
0.432 °/nm,系統的最大可量測速度為25 μm/sec。在長達一個小時的穩定度測試
下,系統總漂移量僅為23 nm。研究中也對所遭遇的量測誤差進行分析與討論,其
包含了系統誤差與環境誤差兩部份,此外,對於本系統的注意事項、物件所引入
的誤差、應用範圍與環境與也將進行討論。
由於準共光程的光路設計有效的降低外部雜訊影響,加上外差光柵干涉術原
有的優點,使得本系統具有高解析度、高靈敏度與高穩定度等的優點。
We describe a quasi-common optical path heterodyne grating interferometry to
measure the position of target which the grating hangs on. The system includes a
heterodyne light source, a designed quasi-common shearing optical path, a grating and a
lock-in amplifier for phase measurement. Then the heterodyne light is focused to the
grating. The optical phase variation which results from the grating movement will be
measured by shearing interference and the lock-in amplifier. With heterodyne shearing
interferometry, this measurement system has high accuracy, high measurement range,
high sensitivity, and high stability.
The theoretical shows that the resolution is 3 pm. In considering the electronic
noise, the experiment results demonstrate the interferometer resolution is 1.3 nm yet.
The system measurement accuracy is 3.7 nm, the sensitivity is 0.432 °/nm and the
maximum velocity measuring ability is 25 μm/s. In long term stability test, the total
displacement result is about 23 nm. In the study, the measurement errors, such as the
environmental error, the geometric error and nonlinearity error, are also discussed.
[1] R. Feynman, 費曼的主張,155-190頁,天下文化,台北市,台灣,2001。
[2] D. C. Su, M. H. Chiu and C. D. Chen “A heterodyne interferometer using an electro-optic modulator for measuring small displacements”, J. Opt., Vol. 27, pp. 19-23, 1996.
[3] J.Y. Lee, H.Y. Chen, C.C. Hsu, and C.C. Wu “Heterodyne interferometer for measurement of in-plane displacement with subnanometer resolution”, Proc. SPIE, Vol. 6280, pp. 62800J, 2006
[4] N. K. Mohan, and P. Rastogi, “Phase-shifting whole-field speckle photography technique for the measurement of in-plane deformations in real time”, Opt. Lett., Vol. 27, P. 565-567, 2002.
[5] R. S. Sirohi, Speckle Metrology, pp. 349- 393, Marcel Dekker, New York, 1993.
[6] N. K. Mohan, J. S. Darlin, M. H. Majles Ara, M. P. Kothiyal, and R. S. Sirohi, “Speckle photography with BaTiO3 crystal for the measurement of in-plane displacement field distribution of distant - 75 - objects”, Optics and Lasers in Engineering, Vol. 29, pp. 211-216, 1998.
[7] R. Tripathi, G.S. Pati, A. Kumar, and K. Singh, “In-plane displacement measurement using a photorefractive speckle correlator”, Opt. Commun., Vol. 149, pp. 355-365, 1998.
[8] Y. Wang, Q. Wang, P. Li, J. Lan, and K. Guo, “Photorefractive holographic interferometry for the measurement of object tilt and in-plane displacement”, Proc. SPIE, Vol. 4292, pp. 230-236, 2002.
[9] T. E. Carlsson, J. Gustafsson, and N. H. Abramson, “Method for fringe enhancement in holographic interferometry for measurement of in-plane displacements”, Proc. SPIE, Vol. 37, pp. 1845-1848, 1998.
[10] H. J. Wang, J. Y. Chen, C. M. Liu, and L. W. Chen, “Phase-shifting moiré interferometry based on a liquid crystal phase modulator”, Opt. Eng., Vol. 44, No.1, pp. 015602, 2005.
[11] S. T. Lin, “Three-dimensional displacement measurement using a newly designed moiré interferometer”, Opt. Eng., Vol. 40, No.5, pp. 822-826, 2001.
[12] Y. Jourlin, J. Jay, and O. Parriaux, “Compact diffractive interferometric displacement sensor in reflection”, Prec. Eng., Vol. 26, pp. 1-6, 2002.
[13] X. Wang, X. Dong, J. Guo, and T. Xie, “Two-dimensional displacement sensing using a cross diffraction grating scheme”, J. Opt. A: Pure Appl. Opt., Vol. 6, pp. 106-111, 2004.
[14] J. A. Gilbert, R. L. Shepherd, H. J. Cole, and P. R. Ashley, “Three-dimensional displacement measurement using diffractive optic interferometry”, Opt. Eng., Vol. 36, No.12, pp. 3336–3342, 1997.
[15] R. K. Heilmann, C. G. Chen, P. TKonkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders”, Nanotechnology, Vol. 15, pp. 504-511, 2004.
[16] 吳乾埼,「繞射式雷射光學尺之研製」,國立台灣大學,應用力學研究所博士論文,台北市,台灣,2001。
[17] 潘政晟,「自校準繞涉式雷射光學尺之設計與實驗」,國立台灣大學,應用力學研究所碩士論文,台北市,台灣,2002。
[18] 李世光,知識創新,第36期,2003。
[19] W. J. Bates, “A wavefront shearing interferometer”, Proc. Phys. Soc., Vol. 59, pp. 940, 1947.
[20] M. V. R. K. Murty, “The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a VisibleGas Laser Source ”, Appl. Opt., Vol. 3, pp. 531, 1964.
[21] S. Yokozeki and T. Suzuki, “Shearing Interferometer Using the Grating as the Beam Splitter”, Appl. Opt., Vol. 10, pp. 1575, 1971.
[22] S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor”, Rev. Sci. Instrum., Vol. 76, pp. 123106, 2005.
[23] D. S. Mehta, P. Singh, M. S. Faridi, S. Mirza, and C. Shakher, “Two-wavelength lateral shearing interferometry”, Opt. Eng. , Vol. 44, No. 85, pp. 603-85, 2005.
[24] 陳光鑫,林振華,光電子學,全華科技圖書股份有限公司,台灣,pp. 11-6,2000。
[25] C. F. Kao, C. C. Chang, and M. H. Lu, “Double-diffraction planar encoder by conjugate optics”, Opt. Eng., Vol. 44, No.2, pp. 023603, 2005.
[26] M. Sargent, W E. Lamb, and R. L. Fork, “Theory of a Zeeman laser I”, Phys. Rev., Vol. 164, pp. 436, 1967.
[27] R. A. Sprague and C. L. Koliopoulos, “Time integrating acousto-optic correlator”, Appl. Opt., Vol. 15, pp. 89-92, 1976.
[28] M. Mansuripur, Classical Optics and its Applications, Cambridge University Press, pp. 471-472,Cambridge, UK, 2002.
[29] D. C. Su, M. H. Chiu, and C. D. Chen, “Simple two frequency laser”, Prec. Eng., Vol. 18, pp. 161-163, 1996.
[30] F. P. Chiang and C. H. Lee, “Dynamic laser speckle interferometry applied to transient flexure problem”, Appl. Opt., Vol. 19, pp. 3085, 1977.
[31] F. P. Chiang and R. M. Juang, “Laser speckle interferometry for plate bending problems”, Appl. Opt., Vol. 23, pp. 997, 1976.
[32] J. M. Cowley, Diffraction Physics, North-Holland Publishing company, New York, 1975.
[33] Stanford Research System, Model SR850 DSP Lock-In Amplifier, 1992.
[34] 陳怡光,「表面電漿共振移相干涉儀之影像處理系統」,國立中央大學,機械工程研究所碩士論文,桃園縣,台灣,2003。
[35] 中興電工資訊家空調網站:http://www.chem.com.tw/contents1/company.htm
[36] Thorlabs公司網站:http://www.thorlabs.com/
[37] 三角函數公式表:http://lee-pl-hk.net/math_01/encyc_16_001.html
[38] C. M. Wu, J. Lawall, and R. D. Deslattes, “Heterodyne interferometer with subatomic periodic nonlinearity”, Appl. Opt., Vol. 38, pp. 19, 1999.
[39] C. M. Wu, J. Lawall, and R. D. Deslattes, “Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry”, Opt. Comm.., Vol. 215, pp. 17-23, 2003.
[40] G. Palmer, Diffraction grating handbook, 5th edition , 2002.