| 研究生: |
鄭凱鴻 Jheng,Kai-Hong |
|---|---|
| 論文名稱: |
氧化鋯聚碳酸酯之透明薄膜 Transparent Zirconia/polycarbonate nanocomposite |
| 指導教授: |
蔣孝澈
Chiang,Hsiao-Che |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 氧化鋯 、聚碳酸酯 、奈米複合物 |
| 外文關鍵詞: | zirconia, polycarbonate, nanocomposite |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,我們以水熱法合成出結晶大小為 5 nm 的立方晶氧化鋯粒子,並
以羧酸進行氧化鋯的表面改質,使其可以穩定的分散在非極性溶劑下。接者與磺
化聚碳酸酯(SPC)混摻,製作出具有高折射率又可以以熱壓成型之透明光學材料。
我們先進行磺化反應來製作出不同磺化程度的聚碳酸酯(PC),並與表面改質過的
氧化鋯在溶劑中混摻。經過表面改質的奈米結晶氧化鋯在二氯甲烷下只能形成白
色的懸浮液。但磺化聚碳酸酯(SPC)可以有效的螯合上奈米氧化鋯,故添加 SPC
混摻後可以形成穩定的透明分散液。因此判斷 SPC 分子鏈上的-SO 3 基團取代了
氧化鋯表面的羧酸,使其可穩定分散於二氯甲烷下。接著用乙醇洗去替換下的羧
酸並除去溶劑後,即可用鑄造成型和熱壓成型的方法來製造高穿透度的氧化鋯/
聚碳酸酯奈米複合材料。此法不同於文獻中利用磷酸酯作界面劑將氧化鋯混入
SPC。我們最後熱壓成品厚度~100 µm,折射率可達到~1.67,無機含量可到達
60wt%。
我們以粉末 X-ray 繞射儀和拉曼光譜儀來鑑定氧化鋯的結晶大小與其結晶
相。以動態雷射粒徑儀觀察表面改質的氧化鋯在非極性溶劑下的粒徑大小分布。
以熱重損失儀和差示掃描量測儀檢驗奈米複合材料熱穩定性。傅立葉紅外光譜儀
分析聚合物與無機奈米材料混合前後之差別。最後以可見光光譜儀和阿貝折射儀
來測量其光學性質。
研究中發現 SPC 的磺化程度雖然不會影響折射率,但是在熱壓成型時卻會
使奈米複合材料黃化,導致穿透度下降。且其磺化程度也會影響與氧化鋯的相容
性。假若想要混入較多奈米氧化鋯,就必須提高 SPC 的磺化程度,但同時也就
降低了耐熱性,而無法以熱壓成型。
In this study, we developed a high refractive index thermoplastic
zirconia/polycarbonate nanocomposite useful in preparing optical components via
injection molding. We have employed our alkaline hydrothermal method to synthesize
cubic zirconia nanoparticles having 5 nm grain size. The surface of these zirconia
nanoparticles was further modified with a carboxylic acid to form a stable dispersion in
a nonpolar solvent. Sulfonated polycarbonate (SPC), produced by the sulfonation
reaction of polycarbonate, was chosen as the coupling agent to make the zirconia
compatible with the polycarbonate (PC) matrix. The carboxylic acid chelated zirconia
nanocrystals formed a stable suspension in dichloromethane. Upon the adding of SPC,
the carboxylic acid ligand was replaced by the SO 3 group of the SPC and the
nanocrystals became transparently dispersible in the solvent. This approach is different
from the use of PEAH as capping agent reported in the literature. The SPC capped
zirconia obtained, after removing the carboxylic acid and solvent, could be cast or hot-
pressed into a transparent piece about 100 µm thick. The maximum zirconia loading
achieved was about 60wt%, leading to an index of 1.67 for the composite.
We used the XRD and Raman spectroscopy to analysis the grain size and crystal
phase of the zirconia nanoparticle, and the DLS to check the particle size distribution
in nonpolar solvents. The Fourier transform infrared (FTIR) spectrometer was
employed to investigate the chemical structure of the nanocomposite. The thermal
stability of nanocomposite was studied by the thermogravimetric analysis and
differential scanning calorimetry. The optical properties of nanocomposite were
investigated by the UV-spectrum and Abbe refractometer.
Our study showed that the degree of sulfonated influences the compatibility
between zirconia and PC. More zirconia nanoparticles must be added to increase the
refractive index of a nanocomposite, which requires a higher degree of sulfonation.
However, excessive sulfonation decreases the thermal stability of the SPC, leading to
yellowing upon thermal treatment during the hot press process. Therefore, there is an
optimal degree of sulfonation that gives a balance between the thermal processability
and refractive index.
參考文獻
1. N. Nakayama, and T. Hayashi, Synthesis of novel UV-curable difunctional
thiourethane methacrylate and studies on organic–inorganic nanocomposite
hard coatings for high refractive index plastic lenses. Progress in Organic
Coatings, 2008. 62: p. 274-284.
2. P.L. Rubinger, D.R. Calado, M. Rubinger, H. Oliveira, and C.L. Donnici,
Characterization of a sulfonated polycarbonate resistive humidity sensor.
Sensors, 2013. 13: p. 2023-32.
3. S. Sridhar, T.M. Aminabhavi, and M. Ramakrishna, Separation of binary
mixtures of carbon dioxide and methane through sulfonated polycarbonate
membranes. Journal of Applied Polymer Science, 2007. 105: p. 1749-1756.
4. S. Wu, G. Zhou, and M. Gu, Synthesis of high refractive index composites for
photonic applications. Optical Materials, 2007. 29: p. 1793-1797.
5. A.L. Linsebigler, G. Lu, and J.T. Yates Jr, Photocatalysis on TiOn Surfaces:
Principles, Mechanisms, and Selected Results. Chemical Review, 1994. 95: p.
735-758.
6. K. Matsui, T. Noguchi, N.M. Islam, Y. Hakuta, and H. Hayashi, Rapid synthesis
of BaTiO3 nanoparticles in supercritical water by continuous hydrothermal
flow reaction system. Journal of Crystal Growth, 2008. 310: p. 2584-2589.
7. Martin, R.M., Elastic Properties of ZnS Structure Semiconductors. Physical
Review B, 1970. 1: p. 4005-4011.
8. K. Luo, S. Zhou, L. Wu, High refractive index and good mechanical property
UV-cured hybrid films containing zirconia nanoparticles. Thin Solid Films,
2009. 517: p. 5974-5980.
9. T.Toshiyuki, O. Sosuke, W. Mitsuru, M. Yuki, M. Araki, and M. Kimihiro,
Hybrid films prepared from latex particles incorporating metal oxide
nanoparticles. Research on Chemical Intermediates, 2012. 39: p. 291-300.
10. L.L. Beecroft, and C.K. Ober, Nanocomposite material for optical application.
Chemistry of Materials, 1997. 9: p. 1302-1317.
11. E. Ghorbel, I. Hadriche, G. Casalino, and N. Masmoudi, Characterization of
Thermo-Mechanical and Fracture Behaviors of Thermoplastic Polymers.
Materials, 2014. 7: p. 375-398.
12. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno,
Transparent poly(bisphenol A carbonate)-based nanocomposites with high
refractive index nanoparticles. European Polymer Journal, 2009. 45: p. 630-638.
13. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno2, Synthesis
and characterization of high refractive index nanoparticle/poly(arylene ether
ketone) nanocomposites. Polymer Journal, 2009. 42: p. 179-184.
14. 王世敏, 許祖勛, 傅晶,
奈米材料原理與製備
, ed. 陳憲偉. 2004: 五南圖書
出版公司.
15. H.A. Wilhelm, and M.L. Andrews, Process of preparing zirconium oxychloride,
Atomic Energy Commission 1960, USpatent 2942944
16. R.T. McSweeney, and K. Zuk, Method of preparing barium, titanium, zirconium
oxide ferroelectric ceramic composition., GTE Products Corporation, 1991,
USpatent 5032559
17. Pugh, E.J., Prosess of making basic zirconium sulfate., Trenton Michigan 71
Assignor to Pennsylvania salt Manufacturing company, 1919, USpatent
1376767
18. D.C. Bradley, F.M.A. HALIM, E.A. Sadek, and W. Wardla, The preparation
of zirconium alkoxides. Journal of the Chemical Society 1952. 377: p. 2032-
2035.
19. S.K. Anand, J.J. Singh, R.K. Multani, and B.D. Jain, A New Method for the
Preparation of Hafnium Tetraalkoxides. Israel Journal of Chemistry, 1969. 7: p.
171-172.
20. V.N. Pokhodenko, and I.N. Tselik, Method of producing basic zirconium
carbonate 1976, USpatent 3961026
21. J. Konishi, K. Fujita, S. Oiwa, K. Nakanishi, and K. Hirao, Crystalline ZrO 2
monoliths with well-defined macropores and mesostructured skeletons prepared
by combining the alkoxy-derived sol-gel process accompanied by phase
separation and the solvothermal Process. Chemistry of Materials, 2008. 20: p.
2165-2173.
22. X. Xu, and X. Wang, Fine tuning of the sizes and phases of ZrO2 nanocrystals.
Nano Research, 2009. 2: p. 891-902.
23. Z. Hua, X.M. Wang, P. Xiao, and J. Shi, Solvent effect on microstructure of
yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis. Journal of
the European Ceramic Society, 2006. 26: p. 2257-2264.
24. A. Behbahani, S. Rowshanzamir, and A. Esmaeilifar, Hydrothermal Synthesis
of Zirconia Nanoparticles from Commercial Zirconia. Procedia Engineering,
2012. 42: p. 908-917.
25. O.V. Pozhidaeva, E.N. Korytkova, D.P. Romanov, and V.V. Gusarov, Formation
of ZrO2 nanocrystals in hydrothermal media of various chemical compositions.
Russian Journal of General Chemistry, 2002. 72: p. 849-853.
26. Y. Hakuta, T. Ohashi, H. Hayashi, and K. Arai, Hydrothermal synthesis of
zirconia nanocrystals in supercritical water. Journal of Materials Research,
2011. 19: p. 2230-2234.
27. J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vázquez, A. G. Ruiz, and X.
Okhimi, Comparative study of nanocrystalline zirconia prepared by
precipitation and sol–gel methods. Catalysis Today, 2001. 68: p. 21-30.
28. H.S. Lim, A. Ahmad and H. Hamzah, Synthesis of zirconium oxide nanoparticle
by sol-gel technique. American Institute of Physics, 2014. 1571: p. 812-816.
29. J. Zhao, W. Fan, D. Wu, and Y. Sun, Synthesis of highly stabilized zirconia sols
from zirconium n-propoxide–diglycol system. Journal of Non-Crystalline Solids,
2000. 261: p. 15-20.
30. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, and G.C. Pellacani,
Microwave-hdrothermal synthesis of nanocrystalline zirconia powders. Journal
of the American Ceramic Society, 2001. 84: p. 2728-2730.
31. R. Dwivedi , A. Maurya, A. Verma, R. Prasad, and K.S. Bartwal, Microwave
assisted sol–gel synthesis of tetragonal zirconia nanoparticles. Journal of
Alloys and Compounds, 2011. 509: p. 6848-6851.
32. K. Bellon, D. Chaumont, and D. Stuerga, Flash synthesis of zirconia
nanoparticles by microwave forced hydrolysis. Journal of Materials Research,
2011. 16: p. 2619-2622.
33. C.Y. Tai, M.H. Lee, and Y.C. Wu, Control of zirconia particle size by using two-
emulsion precipitation technique. Chemical Engineering Science, 2001. 56: p.
2389-2398.
34. N. Chandra, D.K. Singh, M. Sharma, R.K. Upadhyay, S.S. Amritphale, and S.K. 72
Sanghi, Synthesis and characterization of nano-sized zirconia powder
synthesized by single emulsion-assisted direct precipitation. Journal of Colloid
and Interface Science, 2010. 342: p. 327-32.
35. 楊絮飛, 黎維彬,
在水
/
環己烷微乳體系中製備奈米級氧化鋯微粒
. Acta
Phys.-Chim. Sin., 2002. 18: p. 5-9.
36. G.K. Chuah, S. Jaenicke, The preparation of high surface area zirconia-
Influence of precipitating agent and digestion. Applied Catalysis A, 1997. 163:
p. 261-273.
37. S.F. Yin, and B.Q. Xu, On the preparation of high-surface-area nano-zirconia
by reflux-digestion of hydrous zirconia gel in basic solution. ChemPhysChem,
2003. 3: p. 277-281.
38. Chuah, G.K., An investigation into the preparation of high surface area zirconia.
Catalysis Today, 1999. 49: p. 131-139.
39. Wang, S.H., Synthesis amd dispersion of ZrO2 nanocrystals, National
Centrual University thesis, 2014.
40. C.J. Yang, and S.A. Jenekhe, Effects of structure on refractive index of
conjugated polyimines Chemistry of Materials, 1994. 6: p. 196-203.
41. C.L. Tsai, H.J. Yen, and G.S. Liou, Highly transparent polyimide hybrids for
optoelectronic applications. Reactive and Functional Polymers, 2016. 108: p.
2-30.
42. R. Okutsu, Y. Suzuki, S. Ando, and M. Ueda, Poly(thioether sulfone) with high
refractive index and high Abbe's number. Macromolecules, 2008. 41: p. 6165-
6168.
43. M. Ochi, D. Nii, and M. Harada, Effect of acetic acid content on in situ
preparation of epoxy/zirconia hybrid materials. Journal of Materials Science,
2010. 45: p. 6159-6165.
44. H.I. Elim, B. Cai, Y. Kurata, O. Sugihara, T. Kaino, T. Adschiri, A.L. Chu, and
N. Kambe, Refractive Index Control and Rayleigh Scattering Properties of
ransparent TiO2 Nanohybrid Polymer. The Journal of Physical Chemistry B,
2009. 113: p. 10143-10148.
45. C. Lu, and B. Yang, High refractive index organic–inorganic nanocomposites:
design, synthesis and application. Journal of Materials Chemistry, 2009. 19: p.
2884.
46. H. Zhao, and R.K.Y. Li, A study on the photo-degradation of zinc oxide (ZnO)
filled polypropylene nanocomposites. Polymer, 2006. 47: p. 3207-3217.
47. N. Erdem, A.A. Cireli, and U.H. Erdogan, Flame retardancy behaviors and
structural properties of polypropylene/nano-SiO2composite textile filaments.
Journal of Applied Polymer Science, 2009. 111: p. 2085-2091.
48. T.K. Mishra, A. Kumar, V. Verma, K.N. Pandey, and V. Kumar, PEEK
composites reinforced with zirconia nanofiller. Composites Science and
Technology, 2012. 72: p. 1627-1631.
49. N. Miyatake, Y. Li, H.J. Sue, and K. Yamaguchi, Methods of producing zinc
oxide polymer nanocomposites., Texas A&M University System, 2010,
USpatent 0249335
50. D.W. Chae, and B.C. Kim, Characterization on polystyrene/zinc oxide
nanocomposites prepared from solution mixing. Polymers for Advanced
Technologies, 2005. 16: p. 846-850.
51. W. Xu, Z. Qin, H. Yu, Y. Liu, N. Liu, Z. Zhou, and L. Chen, Cellulose
nanocrystals as organic nanofillers for transparent polycarbonate films.
Journal of Nanoparticle Research, 2013. 15: p. 73
52. S. Li, J. Qin, A. Fornara, M. Toprak, M. Muhammed, and D.K. Kim, Synthesis
and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites.
Nanotechnology, 2009. 20: p. 185607.
53. H. Wang, P. Xu, W. Zhong, L. Shen, and Q. Du, Transparent poly(methyl
methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities.
Polymer Degradation and Stability, 2005. 87: p. 319-327.
54. C. Lü, Y. Cheng, Y.Liu, F. Liu, and B. Yang, A Facile Route to ZnS–Polymer
Nanocomposite Optical Materials with High Nanophase Content via γ-Ray
Irradiation Initiated Bulk Polymerization. Advanced Materials, 2006. 18: p.
1188-1192.
55. M.M. Demir, M. Memesa, P. Castignolles, and Gerhard Wegner, PMMA/Zinc
Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization.
Macromolecular Rapid Communications, 2006. 27: p. 763-770.
56. M.M. Demir, K. Koynov, U. Akbey, C. Bubeck, I. Park, I. Lieberwirth, and G.
Wegner, Optical properties of composites of PMMA and surface-modified
zincite nanoparticles. Macromolecules, 2007. 40: p. 1089-1100.
57. S.M. Khaled, R. Sui, P.A. Charpentier, and A.S. Rizkalla, Synthesis of TiO2-
PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir,
2007. 23: p. 3988-3995.
58. H.R. Hakimelahi, L. Hu, B.B. Rupp, and M.R. Coleman, Synthesis and
characterization of transparent alumina reinforced polycarbonate
nanocomposite. Polymer, 2010. 51: p. 2494-2502.
59. R. Palkovits, H. Althues, A. Rumplecker, B. Tesche, A. Dreier, U. Holle, C. H.
Cheng G. Fink, D. F. Shantz, and S. Kaskel, Polymerization of w/o
microemulsions for the preparation of transparent SiO2 /PMMA
nanocomposites. Langmuir, 2005. 21: p. 6048-6053.
60. F.M. Pavel, and R.A. Mackay, Reverse micellar synthesis of a
nanoparticle/polymer composite. Langmuir, 2000. 16: p. 8568 - 8574.
61. A.H. Yuwono, B. Liu, J. Xue, J. Wang, H.I. Elim, W. Ji, Y. Li, and T.J. White,
Controlling the crystallinity and nonlinear optical properties of transparent
TiO2–PMMA nanohybrids. Journal of Materials Chemistry, 2004. 14: p. 2978-
2987.
62. C. Lu, C. Guan, Y. Liu, Y. Cheng, and B. Yang, PbS-Polymer Nanocomposite
Optical Materials with High Refractive. Chemistry of Materials, 2005. 17: p.
2448-2454.
63. T.Obayashi, R. Suzuki, H. Mochizuki, and Y. Aiki, Development of
Thermoplastic Nanocomposite Optical Materials. Fujifilm Research
Development, 2013. 58: p. 50-54.
64. H. Yang, Q. Ren, Quan, G. Zhang, Y.T. Chow, H.P. Chan, and P.L. Chu,
Preparation and optical constants of the nano-crystal and polymer composite
Bi4Ti3O12/PMMA thin films. Optics & Laser Technology, 2005. 37: p. 259-264.
65. R. Suzuki, R. Okutsu, H. Mochizuki, and T. Obayashi, Thermoplastic resin,
orgnaic-inorgnaic hybrid compoition and optical parts, Fujufilm Corporation,
2011, USpatent 0135903
66. N. Nakayama, and T. Hayashi, Preparation and characterization of TiO2 and
polymer nanocomposite films with high refractive index. Journal of Applied
Polymer Science, 2007. 105: p. 3662-3672.
67. X. Hu, and A.L. Lesser, Influence of interchain forces and supermolecular
structure on the drawing behavior of nylon 66 fibers in the presence of
supercritical carbon dioxide. Journal of Applied Polymer Science, 2004. 93: p. 74
2282-2288.
68. P. Wang, C. Yang, Q. Li, B. Xiong, and C. HE, Crystallization behaviors of
polycarbonate film. Journal of Wuhan University, 2014. 60: p. 111-114.
69. H.Y. Shao, Y. Yu, and Z.Y. Fan, Acetone induced crystallization behavior of
polycarbonate. Acta Chimica Sinica, 2008. 66: p. 1720-1724.
70. Janeczek, E. Turska and H., Liquid-induced crystallization of a bisphenoI-
A polycarbonate. Polymer, 1979. 20: p. 855-858.
71. 張 遵 , 王 旭 峰 , 韓 琳 , 王 新 德 ,
磺 化 反 應 工 藝 研 究 進 展
. Chemical
Propellants & Polymeric Materials, 2007. 5: p. 38-42.
72. 溫亦興,
磺化聚碳酸酯型離聚體的合成與性能
. Guangzhou Chemistry 2013.
38: p. 48-56.
73. S. Wang, Y. Hu, Z. Wang, T. Yong, Z. Chen, and W. Fan, Synthesis and
characterization of polycarbonate/ABS/montmorillonite nanocomposites.
Polymer Degradation and Stability, 2003. 80: p. 157-161.
74. M. Sánchez-Soto, D.A. Schiraldi, and S. Illescas, Study of the morphology and
properties of melt-mixed polycarbonate–POSS nanocomposites. European
Polymer Journal, 2009. 45: p. 341-352.
75. P.J. Yoon, D.L. Hunter, and D.R. Paul, Polycarbonate nanocomposites. Part 1.
Effect of organoclay structure on morphology and properties. Polymer, 2003.
44: p. 5323-5339.
76. F.J. Carri´on, J. Sanes, and M.D. Berm´udez, Influence of ZnO nanoparticle
filler on the properties and wear resistance of polycarbonate. Wear, 2007. 262:
p. 1504-1510.
77. F.J. Carrión, J. Sanes, and M.D. Bermúdez, Effect of ionic liquid on the structure
and tribological properties of polycarbonate–zinc oxide nanodispersion.
Materials Letters, 2007. 61: p. 4531-4535.
78. M. Bo¨hning, H. Goering, N. Hao, R. Mach, and A. Scho¨nhals,
Polycarbonate/SiC nanocomposites-influence of nanoparticle dispersion on
molecular mobility and gas transport. Polymers for Advanced Technologies,
2005. 16: p. 262-268.
79. A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, and S. Gong, Study of
utilizing thin polymer surface coating on the nanoparticles for melt
compounding of polycarbonate/alumina nanocomposites and their optical
properties. Composites Science and Technology, 2008. 68: p. 768-776.
80. T. Patel, S. Suin, D. Bhattacharya, and B.B. Khatua, Transparent and Thermally
Conductive Polycarbonate (PC)/Alumina (Al2O3) Nanocomposites:
Preparation and Characterizations. Polymer-Plastics Technology and
Engineering, 2013. 52: p. 1557-1565.
81. T.E. Motaung, A.S. Luyt, M.L. Saladino, and E. Caponetti, Study of morphology,
mechanical properties, and thermal degradation of polycarbonate-titania
nanocomposites as function of titania crystalline phase and content. Polymer
Composites, 2013. 34: p. 164-172.
82. T.E. Motaung, M.L. Saladino, A.S. Luyt, D.F.C. Martino, The effect of silica
nanoparticles on the morphology, mechanical properties and thermal
degradation kinetics of polycarbonate. Composites Science and Technology,
2012. 73: p. 34-39.
83. T.E. Motaung, M.L. Saladino, A.S. Luyt, and D.C. Martino, Influence of the
modification, induced by zirconia nanoparticles, on the structure and properties
of polycarbonate. European Polymer Journal, 2013. 49: p. 2022-2030.
84. Bai, J.T., Preparation of dispersible c-ZrO2 nanocrystals., National Centrual 75
University thesis, 2012.
85. S. Marcinko, and A.Y. Fadeev, Hydrolytic Stability of Organic Monolayers
Supported on TiO2 and ZrO2. Langmuir, 2004. 20: p. 2270-2273.
86. B. Smitha, S. Sridhar, and A.A. Khan, Synthesis and characterization of proton
conducting polymer membranes for fuel cells. Journal of Membrane Science,
2003. 225: p. 63-76.
87. U. Pedretti, A. Gandini, A. Roggero, S.D. Milanese, R. Sisto, C. Valentini, A.
Assogna, Riano, A. Stopponi, and Monterotondo, Process for preparing
modified poly-(2,6-dimethyl-p-oxyphenylene) Snam S.p.A.; Eniricerche S.p.A.,
1992, USpatent 5169416
88. C.R. Martins, G. Ruggeri, M.D. Paoli, Synthesis in pilot plant scale and physical
properties of sulfonated polystyrene. Journal of the Brazilian Chemical Society,
2003. 14: p. 797-802.
89. G. Zhang, L. Liu, H. Wang, and M. Jiang, Preparation and association behavior
of diblock copolymer ionomers based on poly(styrene-b-ethylene-co-propylene).
European Polymer Journal, 1999. 36: p. 61-68.
90. A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J.M. Haack, N.A.
Ochoa, S.P. Nunes, and K.V. Peinemann, Ion exchange membranes derived from
sulfonated polyaramides. Reactive and Functional Polymers, 2003. 57: p. 77-
92.
91. 王光绚, 楊郁國,
烷基苯磺酸颜色的探讨
, in
瀋陽化工
. 2010. p. 25-29.
92. Blackwell, J.A., Development of an Eluotropic Series for the Chromatography
of Lewis Bases on Zirconium Oxide Analytical Chemistry, 1992. 64: p. 863-873.
93. S.H. Aharoni, and N.S. Murthy, Effects of solvent-induced crystallization on the
amorphous phase of polycarbonate of bisphenol A. International Journal of
Polymeric Materials, 1998. 42: p. 275-283.
94. Kim, J.H., Solid-state polymerization of bisphenol A polycarbonate with a
spray-crystallizing method. Journal of Applied Polymer Science, 2009. 111: p.
883-889.
95. C. Vergnat, V. Landais, J. Combet, A. Vorobiev, O. Konovalov, J.F. Legrandand
M. Brinkmann Comparing the growth of a molecular semiconductor on
amorphous and semi-crystalline polycarbonate substrates. Organic Electronics,
2012. 13: p. 1594-1601.
96. 邵 海 瑩 , 范 仲 勇 ,
溶劑 誘 導 聚 碳酸 酯 的結 晶 行 為
. Journal of Fudan
University, 2008. 47: p. 529-533.
97. Z. Fan, C. Shu, Y. Yu, V. Zaporojtchenko, and F. Faupel, Vapor-induced
crystallization behavior of bisphenol-A polycarbonate. Polymer Engineering &
Science, 2006. 46: p. 729-734.
98. J. Font, and J. Muntasell, Effect of ball milling on semicrystalline bisphenol A
polycarbonate. Materials Research Bulletin, 2000. 35: p. 681-687.
99. R.J. Zhou, and T. Burkhart, Optical properties of particle-filled polycarbonate,
polystyrene, and poly(methyl methacrylate) composites. Journal of Applied
Polymer Science, 2010. 115: p. 1866-1872.
100. P. Yoder, D. Vukobratovich, Opto-Mechanical Systems Design, Fourth Edition,
Volume 1: Design and Analysis of Opto-Mechanical Assemblies. 2015. 1: p. 117.
101. A. Seidel, and T. Eckel, Impact-modified polycarbonate blends, Bayer
Aktiengesellschaft, 2006, USpatent 7067567
102. T. Eckel, V. Taschner, A. Feldermann, and E. Wenz, Flameproofed impact-
modified polycarbonate compositions Bayer Materialscience AG, 2012,
USpatent 8178603 103. V. Taschner, T. Eckel, A. Feldermann, E. Wenz, and D. Wittmann, Flame
retardant impact-modified polycarbonate compositions Bayer Materialscience
AG, 2010, USpatent 0160508