跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭凱鴻
Jheng,Kai-Hong
論文名稱: 氧化鋯聚碳酸酯之透明薄膜
Transparent Zirconia/polycarbonate nanocomposite
指導教授: 蔣孝澈
Chiang,Hsiao-Che
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 氧化鋯聚碳酸酯奈米複合物
外文關鍵詞: zirconia, polycarbonate, nanocomposite
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們以水熱法合成出結晶大小為 5 nm 的立方晶氧化鋯粒子,並
    以羧酸進行氧化鋯的表面改質,使其可以穩定的分散在非極性溶劑下。接者與磺
    化聚碳酸酯(SPC)混摻,製作出具有高折射率又可以以熱壓成型之透明光學材料。
    我們先進行磺化反應來製作出不同磺化程度的聚碳酸酯(PC),並與表面改質過的
    氧化鋯在溶劑中混摻。經過表面改質的奈米結晶氧化鋯在二氯甲烷下只能形成白
    色的懸浮液。但磺化聚碳酸酯(SPC)可以有效的螯合上奈米氧化鋯,故添加 SPC
    混摻後可以形成穩定的透明分散液。因此判斷 SPC 分子鏈上的-SO 3 基團取代了
    氧化鋯表面的羧酸,使其可穩定分散於二氯甲烷下。接著用乙醇洗去替換下的羧
    酸並除去溶劑後,即可用鑄造成型和熱壓成型的方法來製造高穿透度的氧化鋯/
    聚碳酸酯奈米複合材料。此法不同於文獻中利用磷酸酯作界面劑將氧化鋯混入
    SPC。我們最後熱壓成品厚度~100 µm,折射率可達到~1.67,無機含量可到達
    60wt%。
    我們以粉末 X-ray 繞射儀和拉曼光譜儀來鑑定氧化鋯的結晶大小與其結晶
    相。以動態雷射粒徑儀觀察表面改質的氧化鋯在非極性溶劑下的粒徑大小分布。
    以熱重損失儀和差示掃描量測儀檢驗奈米複合材料熱穩定性。傅立葉紅外光譜儀
    分析聚合物與無機奈米材料混合前後之差別。最後以可見光光譜儀和阿貝折射儀
    來測量其光學性質。
    研究中發現 SPC 的磺化程度雖然不會影響折射率,但是在熱壓成型時卻會
    使奈米複合材料黃化,導致穿透度下降。且其磺化程度也會影響與氧化鋯的相容
    性。假若想要混入較多奈米氧化鋯,就必須提高 SPC 的磺化程度,但同時也就
    降低了耐熱性,而無法以熱壓成型。


    In this study, we developed a high refractive index thermoplastic
    zirconia/polycarbonate nanocomposite useful in preparing optical components via
    injection molding. We have employed our alkaline hydrothermal method to synthesize
    cubic zirconia nanoparticles having 5 nm grain size. The surface of these zirconia
    nanoparticles was further modified with a carboxylic acid to form a stable dispersion in
    a nonpolar solvent. Sulfonated polycarbonate (SPC), produced by the sulfonation
    reaction of polycarbonate, was chosen as the coupling agent to make the zirconia
    compatible with the polycarbonate (PC) matrix. The carboxylic acid chelated zirconia
    nanocrystals formed a stable suspension in dichloromethane. Upon the adding of SPC,
    the carboxylic acid ligand was replaced by the SO 3 group of the SPC and the
    nanocrystals became transparently dispersible in the solvent. This approach is different
    from the use of PEAH as capping agent reported in the literature. The SPC capped
    zirconia obtained, after removing the carboxylic acid and solvent, could be cast or hot-
    pressed into a transparent piece about 100 µm thick. The maximum zirconia loading
    achieved was about 60wt%, leading to an index of 1.67 for the composite.
    We used the XRD and Raman spectroscopy to analysis the grain size and crystal
    phase of the zirconia nanoparticle, and the DLS to check the particle size distribution
    in nonpolar solvents. The Fourier transform infrared (FTIR) spectrometer was
    employed to investigate the chemical structure of the nanocomposite. The thermal
    stability of nanocomposite was studied by the thermogravimetric analysis and
    differential scanning calorimetry. The optical properties of nanocomposite were
    investigated by the UV-spectrum and Abbe refractometer.
    Our study showed that the degree of sulfonated influences the compatibility
    between zirconia and PC. More zirconia nanoparticles must be added to increase the
    refractive index of a nanocomposite, which requires a higher degree of sulfonation.
    However, excessive sulfonation decreases the thermal stability of the SPC, leading to
    yellowing upon thermal treatment during the hot press process. Therefore, there is an
    optimal degree of sulfonation that gives a balance between the thermal processability
    and refractive index.

    IV 目錄 摘要 ........................................................................................................................................... II Abstract .................................................................................................................................... III 目錄 .......................................................................................................................................... IV 圖目錄 ...................................................................................................................................... VI 表目錄 .................................................................................................................................... VIII 第一章、緒論 ........................................................................................................................... 1 1-1 背景與研究動機 ............................................................................................................ 1 第二章、文獻回顧 ................................................................................................................... 4 2-1 奈米結晶氧化鋯 ............................................................................................................. 4 2-2 熱塑性奈米複合物 ....................................................................................................... 11 2-3 聚碳酸酯之奈米複合物 ............................................................................................... 19 2-4 實驗目的 ....................................................................................................................... 23 第三章、實驗步驟與方法 ..................................................................................................... 24 3-1 實驗架構 ...................................................................................................................... 24 3-2 實驗藥品 ...................................................................................................................... 25 3-3 合成有機酸改質之奈米結晶氧化鋯 .......................................................................... 26 3-3-1 氧化鋯合成 .......................................................................................................... 26 3-3-2 磷酸酯改質氧化鋯 .............................................................................................. 26 3-3-3 有機酸改質氧化鋯 .............................................................................................. 27 3-4 磺化聚碳酸酯合成 ...................................................................................................... 27 3-4-1 製備硫酸乙酰 (Acetyl Sulfate, AS) ..................................................................... 27 3-4-2 磺化反應 .............................................................................................................. 27 3-4-3 酸鹼滴定 .............................................................................................................. 28 3-5 製備奈米氧化鋯/聚碳酸酯(ZrO 2 /PC)奈米複合材料 ................................................ 28 3-5-1 鑄造成型 .............................................................................................................. 28 3-5-2 熱壓成型 .............................................................................................................. 28 3-6 分析儀器 ...................................................................................................................... 29 3-6-1 粉末 X-ray 繞射儀 ............................................................................................... 29 3-6-2 拉曼光譜儀 .......................................................................................................... 29 3-6-3 動態雷射粒徑儀 .................................................................................................. 29 3-6-4 熱重損失分析儀 .................................................................................................. 30 3-6-5 差示掃描量測儀 .................................................................................................. 30 3-6-6 傅立葉紅外光譜儀 .............................................................................................. 30 3-6-7 可見光光譜儀 ...................................................................................................... 31 3-6-8 阿貝折射儀 .......................................................................................................... 31 第四章、實驗結果與討論 ..................................................................................................... 32 4-1 氧化鋯奈米結晶之大小 .............................................................................................. 32 4-2 不同磺化度的聚碳酸酯 .............................................................................................. 43 4-3 奈米氧化鋯/聚碳酸酯複合材料 .................................................................................. 51 4-3-1 奈米氧化鋯/聚碳酸酯複合材料之溶液鑄造法................................................... 57 4-3-2 奈米氧化鋯/聚碳酸酯複合材料之熱壓成型 ...................................................... 62 4-3-3 奈米氧化鋯/聚碳酸酯複合材料之折射率 .......................................................... 64 第五章、總結與未來展望 ..................................................................................................... 68 總結 ..................................................................................................................................... 68 未來展望 ............................................................................................................................. 69 參考文獻 ................................................................................................................................. 70

    參考文獻
    1. N. Nakayama, and T. Hayashi, Synthesis of novel UV-curable difunctional
    thiourethane methacrylate and studies on organic–inorganic nanocomposite
    hard coatings for high refractive index plastic lenses. Progress in Organic
    Coatings, 2008. 62: p. 274-284.
    2. P.L. Rubinger, D.R. Calado, M. Rubinger, H. Oliveira, and C.L. Donnici,
    Characterization of a sulfonated polycarbonate resistive humidity sensor.
    Sensors, 2013. 13: p. 2023-32.
    3. S. Sridhar, T.M. Aminabhavi, and M. Ramakrishna, Separation of binary
    mixtures of carbon dioxide and methane through sulfonated polycarbonate
    membranes. Journal of Applied Polymer Science, 2007. 105: p. 1749-1756.
    4. S. Wu, G. Zhou, and M. Gu, Synthesis of high refractive index composites for
    photonic applications. Optical Materials, 2007. 29: p. 1793-1797.
    5. A.L. Linsebigler, G. Lu, and J.T. Yates Jr, Photocatalysis on TiOn Surfaces:
    Principles, Mechanisms, and Selected Results. Chemical Review, 1994. 95: p.
    735-758.
    6. K. Matsui, T. Noguchi, N.M. Islam, Y. Hakuta, and H. Hayashi, Rapid synthesis
    of BaTiO3 nanoparticles in supercritical water by continuous hydrothermal
    flow reaction system. Journal of Crystal Growth, 2008. 310: p. 2584-2589.
    7. Martin, R.M., Elastic Properties of ZnS Structure Semiconductors. Physical
    Review B, 1970. 1: p. 4005-4011.
    8. K. Luo, S. Zhou, L. Wu, High refractive index and good mechanical property
    UV-cured hybrid films containing zirconia nanoparticles. Thin Solid Films,
    2009. 517: p. 5974-5980.
    9. T.Toshiyuki, O. Sosuke, W. Mitsuru, M. Yuki, M. Araki, and M. Kimihiro,
    Hybrid films prepared from latex particles incorporating metal oxide
    nanoparticles. Research on Chemical Intermediates, 2012. 39: p. 291-300.
    10. L.L. Beecroft, and C.K. Ober, Nanocomposite material for optical application.
    Chemistry of Materials, 1997. 9: p. 1302-1317.
    11. E. Ghorbel, I. Hadriche, G. Casalino, and N. Masmoudi, Characterization of
    Thermo-Mechanical and Fracture Behaviors of Thermoplastic Polymers.
    Materials, 2014. 7: p. 375-398.
    12. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno,
    Transparent poly(bisphenol A carbonate)-based nanocomposites with high
    refractive index nanoparticles. European Polymer Journal, 2009. 45: p. 630-638.
    13. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, and N. Ueno2, Synthesis
    and characterization of high refractive index nanoparticle/poly(arylene ether
    ketone) nanocomposites. Polymer Journal, 2009. 42: p. 179-184.
    14. 王世敏, 許祖勛, 傅晶,
    奈米材料原理與製備
    , ed. 陳憲偉. 2004: 五南圖書
    出版公司.
    15. H.A. Wilhelm, and M.L. Andrews, Process of preparing zirconium oxychloride,
    Atomic Energy Commission 1960, USpatent 2942944
    16. R.T. McSweeney, and K. Zuk, Method of preparing barium, titanium, zirconium
    oxide ferroelectric ceramic composition., GTE Products Corporation, 1991,
    USpatent 5032559
    17. Pugh, E.J., Prosess of making basic zirconium sulfate., Trenton Michigan 71

    Assignor to Pennsylvania salt Manufacturing company, 1919, USpatent
    1376767
    18. D.C. Bradley, F.M.A. HALIM, E.A. Sadek, and W. Wardla, The preparation
    of zirconium alkoxides. Journal of the Chemical Society 1952. 377: p. 2032-
    2035.
    19. S.K. Anand, J.J. Singh, R.K. Multani, and B.D. Jain, A New Method for the
    Preparation of Hafnium Tetraalkoxides. Israel Journal of Chemistry, 1969. 7: p.
    171-172.
    20. V.N. Pokhodenko, and I.N. Tselik, Method of producing basic zirconium
    carbonate 1976, USpatent 3961026
    21. J. Konishi, K. Fujita, S. Oiwa, K. Nakanishi, and K. Hirao, Crystalline ZrO 2
    monoliths with well-defined macropores and mesostructured skeletons prepared
    by combining the alkoxy-derived sol-gel process accompanied by phase
    separation and the solvothermal Process. Chemistry of Materials, 2008. 20: p.
    2165-2173.
    22. X. Xu, and X. Wang, Fine tuning of the sizes and phases of ZrO2 nanocrystals.
    Nano Research, 2009. 2: p. 891-902.
    23. Z. Hua, X.M. Wang, P. Xiao, and J. Shi, Solvent effect on microstructure of
    yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis. Journal of
    the European Ceramic Society, 2006. 26: p. 2257-2264.
    24. A. Behbahani, S. Rowshanzamir, and A. Esmaeilifar, Hydrothermal Synthesis
    of Zirconia Nanoparticles from Commercial Zirconia. Procedia Engineering,
    2012. 42: p. 908-917.
    25. O.V. Pozhidaeva, E.N. Korytkova, D.P. Romanov, and V.V. Gusarov, Formation
    of ZrO2 nanocrystals in hydrothermal media of various chemical compositions.
    Russian Journal of General Chemistry, 2002. 72: p. 849-853.
    26. Y. Hakuta, T. Ohashi, H. Hayashi, and K. Arai, Hydrothermal synthesis of
    zirconia nanocrystals in supercritical water. Journal of Materials Research,
    2011. 19: p. 2230-2234.
    27. J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vázquez, A. G. Ruiz, and X.
    Okhimi, Comparative study of nanocrystalline zirconia prepared by
    precipitation and sol–gel methods. Catalysis Today, 2001. 68: p. 21-30.
    28. H.S. Lim, A. Ahmad and H. Hamzah, Synthesis of zirconium oxide nanoparticle
    by sol-gel technique. American Institute of Physics, 2014. 1571: p. 812-816.
    29. J. Zhao, W. Fan, D. Wu, and Y. Sun, Synthesis of highly stabilized zirconia sols
    from zirconium n-propoxide–diglycol system. Journal of Non-Crystalline Solids,
    2000. 261: p. 15-20.
    30. F. Bondioli, A.M. Ferrari, C. Leonelli, C. Siligardi, and G.C. Pellacani,
    Microwave-hdrothermal synthesis of nanocrystalline zirconia powders. Journal
    of the American Ceramic Society, 2001. 84: p. 2728-2730.
    31. R. Dwivedi , A. Maurya, A. Verma, R. Prasad, and K.S. Bartwal, Microwave
    assisted sol–gel synthesis of tetragonal zirconia nanoparticles. Journal of
    Alloys and Compounds, 2011. 509: p. 6848-6851.
    32. K. Bellon, D. Chaumont, and D. Stuerga, Flash synthesis of zirconia
    nanoparticles by microwave forced hydrolysis. Journal of Materials Research,
    2011. 16: p. 2619-2622.
    33. C.Y. Tai, M.H. Lee, and Y.C. Wu, Control of zirconia particle size by using two-
    emulsion precipitation technique. Chemical Engineering Science, 2001. 56: p.
    2389-2398.
    34. N. Chandra, D.K. Singh, M. Sharma, R.K. Upadhyay, S.S. Amritphale, and S.K. 72

    Sanghi, Synthesis and characterization of nano-sized zirconia powder
    synthesized by single emulsion-assisted direct precipitation. Journal of Colloid
    and Interface Science, 2010. 342: p. 327-32.
    35. 楊絮飛, 黎維彬,
    在水
    /
    環己烷微乳體系中製備奈米級氧化鋯微粒
    . Acta
    Phys.-Chim. Sin., 2002. 18: p. 5-9.
    36. G.K. Chuah, S. Jaenicke, The preparation of high surface area zirconia-
    Influence of precipitating agent and digestion. Applied Catalysis A, 1997. 163:
    p. 261-273.
    37. S.F. Yin, and B.Q. Xu, On the preparation of high-surface-area nano-zirconia
    by reflux-digestion of hydrous zirconia gel in basic solution. ChemPhysChem,
    2003. 3: p. 277-281.
    38. Chuah, G.K., An investigation into the preparation of high surface area zirconia.
    Catalysis Today, 1999. 49: p. 131-139.
    39. Wang, S.H., Synthesis amd dispersion of ZrO2 nanocrystals, National
    Centrual University thesis, 2014.
    40. C.J. Yang, and S.A. Jenekhe, Effects of structure on refractive index of
    conjugated polyimines Chemistry of Materials, 1994. 6: p. 196-203.
    41. C.L. Tsai, H.J. Yen, and G.S. Liou, Highly transparent polyimide hybrids for
    optoelectronic applications. Reactive and Functional Polymers, 2016. 108: p.
    2-30.
    42. R. Okutsu, Y. Suzuki, S. Ando, and M. Ueda, Poly(thioether sulfone) with high
    refractive index and high Abbe's number. Macromolecules, 2008. 41: p. 6165-
    6168.
    43. M. Ochi, D. Nii, and M. Harada, Effect of acetic acid content on in situ
    preparation of epoxy/zirconia hybrid materials. Journal of Materials Science,
    2010. 45: p. 6159-6165.
    44. H.I. Elim, B. Cai, Y. Kurata, O. Sugihara, T. Kaino, T. Adschiri, A.L. Chu, and
    N. Kambe, Refractive Index Control and Rayleigh Scattering Properties of
    ransparent TiO2 Nanohybrid Polymer. The Journal of Physical Chemistry B,
    2009. 113: p. 10143-10148.
    45. C. Lu, and B. Yang, High refractive index organic–inorganic nanocomposites:
    design, synthesis and application. Journal of Materials Chemistry, 2009. 19: p.
    2884.
    46. H. Zhao, and R.K.Y. Li, A study on the photo-degradation of zinc oxide (ZnO)
    filled polypropylene nanocomposites. Polymer, 2006. 47: p. 3207-3217.
    47. N. Erdem, A.A. Cireli, and U.H. Erdogan, Flame retardancy behaviors and
    structural properties of polypropylene/nano-SiO2composite textile filaments.
    Journal of Applied Polymer Science, 2009. 111: p. 2085-2091.
    48. T.K. Mishra, A. Kumar, V. Verma, K.N. Pandey, and V. Kumar, PEEK
    composites reinforced with zirconia nanofiller. Composites Science and
    Technology, 2012. 72: p. 1627-1631.
    49. N. Miyatake, Y. Li, H.J. Sue, and K. Yamaguchi, Methods of producing zinc
    oxide polymer nanocomposites., Texas A&M University System, 2010,
    USpatent 0249335
    50. D.W. Chae, and B.C. Kim, Characterization on polystyrene/zinc oxide
    nanocomposites prepared from solution mixing. Polymers for Advanced
    Technologies, 2005. 16: p. 846-850.
    51. W. Xu, Z. Qin, H. Yu, Y. Liu, N. Liu, Z. Zhou, and L. Chen, Cellulose
    nanocrystals as organic nanofillers for transparent polycarbonate films.
    Journal of Nanoparticle Research, 2013. 15: p. 73

    52. S. Li, J. Qin, A. Fornara, M. Toprak, M. Muhammed, and D.K. Kim, Synthesis
    and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites.
    Nanotechnology, 2009. 20: p. 185607.
    53. H. Wang, P. Xu, W. Zhong, L. Shen, and Q. Du, Transparent poly(methyl
    methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities.
    Polymer Degradation and Stability, 2005. 87: p. 319-327.
    54. C. Lü, Y. Cheng, Y.Liu, F. Liu, and B. Yang, A Facile Route to ZnS–Polymer
    Nanocomposite Optical Materials with High Nanophase Content via γ-Ray
    Irradiation Initiated Bulk Polymerization. Advanced Materials, 2006. 18: p.
    1188-1192.
    55. M.M. Demir, M. Memesa, P. Castignolles, and Gerhard Wegner, PMMA/Zinc
    Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization.
    Macromolecular Rapid Communications, 2006. 27: p. 763-770.
    56. M.M. Demir, K. Koynov, U. Akbey, C. Bubeck, I. Park, I. Lieberwirth, and G.
    Wegner, Optical properties of composites of PMMA and surface-modified
    zincite nanoparticles. Macromolecules, 2007. 40: p. 1089-1100.
    57. S.M. Khaled, R. Sui, P.A. Charpentier, and A.S. Rizkalla, Synthesis of TiO2-
    PMMA nanocomposite: using methacrylic acid as a coupling agent. Langmuir,
    2007. 23: p. 3988-3995.
    58. H.R. Hakimelahi, L. Hu, B.B. Rupp, and M.R. Coleman, Synthesis and
    characterization of transparent alumina reinforced polycarbonate
    nanocomposite. Polymer, 2010. 51: p. 2494-2502.
    59. R. Palkovits, H. Althues, A. Rumplecker, B. Tesche, A. Dreier, U. Holle, C. H.
    Cheng G. Fink, D. F. Shantz, and S. Kaskel, Polymerization of w/o
    microemulsions for the preparation of transparent SiO2 /PMMA
    nanocomposites. Langmuir, 2005. 21: p. 6048-6053.
    60. F.M. Pavel, and R.A. Mackay, Reverse micellar synthesis of a
    nanoparticle/polymer composite. Langmuir, 2000. 16: p. 8568 - 8574.
    61. A.H. Yuwono, B. Liu, J. Xue, J. Wang, H.I. Elim, W. Ji, Y. Li, and T.J. White,
    Controlling the crystallinity and nonlinear optical properties of transparent
    TiO2–PMMA nanohybrids. Journal of Materials Chemistry, 2004. 14: p. 2978-
    2987.
    62. C. Lu, C. Guan, Y. Liu, Y. Cheng, and B. Yang, PbS-Polymer Nanocomposite
    Optical Materials with High Refractive. Chemistry of Materials, 2005. 17: p.
    2448-2454.
    63. T.Obayashi, R. Suzuki, H. Mochizuki, and Y. Aiki, Development of
    Thermoplastic Nanocomposite Optical Materials. Fujifilm Research
    Development, 2013. 58: p. 50-54.
    64. H. Yang, Q. Ren, Quan, G. Zhang, Y.T. Chow, H.P. Chan, and P.L. Chu,
    Preparation and optical constants of the nano-crystal and polymer composite
    Bi4Ti3O12/PMMA thin films. Optics & Laser Technology, 2005. 37: p. 259-264.
    65. R. Suzuki, R. Okutsu, H. Mochizuki, and T. Obayashi, Thermoplastic resin,
    orgnaic-inorgnaic hybrid compoition and optical parts, Fujufilm Corporation,
    2011, USpatent 0135903
    66. N. Nakayama, and T. Hayashi, Preparation and characterization of TiO2 and
    polymer nanocomposite films with high refractive index. Journal of Applied
    Polymer Science, 2007. 105: p. 3662-3672.
    67. X. Hu, and A.L. Lesser, Influence of interchain forces and supermolecular
    structure on the drawing behavior of nylon 66 fibers in the presence of
    supercritical carbon dioxide. Journal of Applied Polymer Science, 2004. 93: p. 74

    2282-2288.
    68. P. Wang, C. Yang, Q. Li, B. Xiong, and C. HE, Crystallization behaviors of
    polycarbonate film. Journal of Wuhan University, 2014. 60: p. 111-114.
    69. H.Y. Shao, Y. Yu, and Z.Y. Fan, Acetone induced crystallization behavior of
    polycarbonate. Acta Chimica Sinica, 2008. 66: p. 1720-1724.
    70. Janeczek, E. Turska and H., Liquid-induced crystallization of a bisphenoI-
    A polycarbonate. Polymer, 1979. 20: p. 855-858.
    71. 張 遵 , 王 旭 峰 , 韓 琳 , 王 新 德 ,
    磺 化 反 應 工 藝 研 究 進 展
    . Chemical
    Propellants & Polymeric Materials, 2007. 5: p. 38-42.
    72. 溫亦興,
    磺化聚碳酸酯型離聚體的合成與性能
    . Guangzhou Chemistry 2013.
    38: p. 48-56.
    73. S. Wang, Y. Hu, Z. Wang, T. Yong, Z. Chen, and W. Fan, Synthesis and
    characterization of polycarbonate/ABS/montmorillonite nanocomposites.
    Polymer Degradation and Stability, 2003. 80: p. 157-161.
    74. M. Sánchez-Soto, D.A. Schiraldi, and S. Illescas, Study of the morphology and
    properties of melt-mixed polycarbonate–POSS nanocomposites. European
    Polymer Journal, 2009. 45: p. 341-352.
    75. P.J. Yoon, D.L. Hunter, and D.R. Paul, Polycarbonate nanocomposites. Part 1.
    Effect of organoclay structure on morphology and properties. Polymer, 2003.
    44: p. 5323-5339.
    76. F.J. Carri´on, J. Sanes, and M.D. Berm´udez, Influence of ZnO nanoparticle
    filler on the properties and wear resistance of polycarbonate. Wear, 2007. 262:
    p. 1504-1510.
    77. F.J. Carrión, J. Sanes, and M.D. Bermúdez, Effect of ionic liquid on the structure
    and tribological properties of polycarbonate–zinc oxide nanodispersion.
    Materials Letters, 2007. 61: p. 4531-4535.
    78. M. Bo¨hning, H. Goering, N. Hao, R. Mach, and A. Scho¨nhals,
    Polycarbonate/SiC nanocomposites-influence of nanoparticle dispersion on
    molecular mobility and gas transport. Polymers for Advanced Technologies,
    2005. 16: p. 262-268.
    79. A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, and S. Gong, Study of
    utilizing thin polymer surface coating on the nanoparticles for melt
    compounding of polycarbonate/alumina nanocomposites and their optical
    properties. Composites Science and Technology, 2008. 68: p. 768-776.
    80. T. Patel, S. Suin, D. Bhattacharya, and B.B. Khatua, Transparent and Thermally
    Conductive Polycarbonate (PC)/Alumina (Al2O3) Nanocomposites:
    Preparation and Characterizations. Polymer-Plastics Technology and
    Engineering, 2013. 52: p. 1557-1565.
    81. T.E. Motaung, A.S. Luyt, M.L. Saladino, and E. Caponetti, Study of morphology,
    mechanical properties, and thermal degradation of polycarbonate-titania
    nanocomposites as function of titania crystalline phase and content. Polymer
    Composites, 2013. 34: p. 164-172.
    82. T.E. Motaung, M.L. Saladino, A.S. Luyt, D.F.C. Martino, The effect of silica
    nanoparticles on the morphology, mechanical properties and thermal
    degradation kinetics of polycarbonate. Composites Science and Technology,
    2012. 73: p. 34-39.
    83. T.E. Motaung, M.L. Saladino, A.S. Luyt, and D.C. Martino, Influence of the
    modification, induced by zirconia nanoparticles, on the structure and properties
    of polycarbonate. European Polymer Journal, 2013. 49: p. 2022-2030.
    84. Bai, J.T., Preparation of dispersible c-ZrO2 nanocrystals., National Centrual 75

    University thesis, 2012.
    85. S. Marcinko, and A.Y. Fadeev, Hydrolytic Stability of Organic Monolayers
    Supported on TiO2 and ZrO2. Langmuir, 2004. 20: p. 2270-2273.
    86. B. Smitha, S. Sridhar, and A.A. Khan, Synthesis and characterization of proton
    conducting polymer membranes for fuel cells. Journal of Membrane Science,
    2003. 225: p. 63-76.
    87. U. Pedretti, A. Gandini, A. Roggero, S.D. Milanese, R. Sisto, C. Valentini, A.
    Assogna, Riano, A. Stopponi, and Monterotondo, Process for preparing
    modified poly-(2,6-dimethyl-p-oxyphenylene) Snam S.p.A.; Eniricerche S.p.A.,
    1992, USpatent 5169416
    88. C.R. Martins, G. Ruggeri, M.D. Paoli, Synthesis in pilot plant scale and physical
    properties of sulfonated polystyrene. Journal of the Brazilian Chemical Society,
    2003. 14: p. 797-802.
    89. G. Zhang, L. Liu, H. Wang, and M. Jiang, Preparation and association behavior
    of diblock copolymer ionomers based on poly(styrene-b-ethylene-co-propylene).
    European Polymer Journal, 1999. 36: p. 61-68.
    90. A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Komber, J.M. Haack, N.A.
    Ochoa, S.P. Nunes, and K.V. Peinemann, Ion exchange membranes derived from
    sulfonated polyaramides. Reactive and Functional Polymers, 2003. 57: p. 77-
    92.
    91. 王光绚, 楊郁國,
    烷基苯磺酸颜色的探讨
    , in
    瀋陽化工
    . 2010. p. 25-29.
    92. Blackwell, J.A., Development of an Eluotropic Series for the Chromatography
    of Lewis Bases on Zirconium Oxide Analytical Chemistry, 1992. 64: p. 863-873.
    93. S.H. Aharoni, and N.S. Murthy, Effects of solvent-induced crystallization on the
    amorphous phase of polycarbonate of bisphenol A. International Journal of
    Polymeric Materials, 1998. 42: p. 275-283.
    94. Kim, J.H., Solid-state polymerization of bisphenol A polycarbonate with a
    spray-crystallizing method. Journal of Applied Polymer Science, 2009. 111: p.
    883-889.
    95. C. Vergnat, V. Landais, J. Combet, A. Vorobiev, O. Konovalov, J.F. Legrandand
    M. Brinkmann Comparing the growth of a molecular semiconductor on
    amorphous and semi-crystalline polycarbonate substrates. Organic Electronics,
    2012. 13: p. 1594-1601.
    96. 邵 海 瑩 , 范 仲 勇 ,
    溶劑 誘 導 聚 碳酸 酯 的結 晶 行 為
    . Journal of Fudan
    University, 2008. 47: p. 529-533.
    97. Z. Fan, C. Shu, Y. Yu, V. Zaporojtchenko, and F. Faupel, Vapor-induced
    crystallization behavior of bisphenol-A polycarbonate. Polymer Engineering &
    Science, 2006. 46: p. 729-734.
    98. J. Font, and J. Muntasell, Effect of ball milling on semicrystalline bisphenol A
    polycarbonate. Materials Research Bulletin, 2000. 35: p. 681-687.
    99. R.J. Zhou, and T. Burkhart, Optical properties of particle-filled polycarbonate,
    polystyrene, and poly(methyl methacrylate) composites. Journal of Applied
    Polymer Science, 2010. 115: p. 1866-1872.
    100. P. Yoder, D. Vukobratovich, Opto-Mechanical Systems Design, Fourth Edition,
    Volume 1: Design and Analysis of Opto-Mechanical Assemblies. 2015. 1: p. 117.
    101. A. Seidel, and T. Eckel, Impact-modified polycarbonate blends, Bayer
    Aktiengesellschaft, 2006, USpatent 7067567
    102. T. Eckel, V. Taschner, A. Feldermann, and E. Wenz, Flameproofed impact-
    modified polycarbonate compositions Bayer Materialscience AG, 2012,
    USpatent 8178603 103. V. Taschner, T. Eckel, A. Feldermann, E. Wenz, and D. Wittmann, Flame
    retardant impact-modified polycarbonate compositions Bayer Materialscience
    AG, 2010, USpatent 0160508

    QR CODE
    :::