| 研究生: |
曾昱翔 Yu-Hsiang Tseng |
|---|---|
| 論文名稱: |
使用步階式阻抗共振器實現於微小化準八木天線設計 Microstrip-fed quasi-Yagi antenna featuring compact characteristics |
| 指導教授: |
凃文化
Wen-Hua Tu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 步階式阻抗共振器 、微帶天線 、準八木天線 |
| 外文關鍵詞: | microstrip antenna, quasi-Yagi, stepped-impedance resonator |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用步階式阻抗共振器,設計出微小化準八木天線,其結構包含了導向器、步階阻抗的偶極天線、步階阻抗的反射器與截剪接地面。主要是探討各參數對天線的影響,包含了各元件的尺寸、元件與元件之間的間距與步階式阻抗共振器的選擇,並簡化設計流程。
所設計的準八木天線因利用步階式阻抗共振器,可有效地縮小電路面積且維持一定的天線增益,在不嚴重影響天線增益的情況下,步階阻抗偶極天線相較於傳統的偶極天線可大幅度地縮減27.5%的尺寸,以及可維持天線增益變化在2.6–4.2 dBi之間,在應用於無線區域網路(WLAN) 802.11 b/g的頻段中,可獲得大於10 dB的前後比(front-to-back ratio),同時,適當地調整轉接器的尺寸與距離,讓10 dB頻寬可達到28%。所有的設計流程與量測模擬結果皆有詳細的討論於本論文中。
In this thesis, stepped-impedance resonator (SIR) is used to design a compact quasi-Yagi antenna. The proposed antennas are composed of director, stepped-impedance dipole antenna, stepped-impedance reflector, and the truncated ground plane. The goal is to research on how each parameter affects the antennas performance, including elements’ dimensions, the distance between the elements, and the choice of the resonator. Meanwhile, the design procedure is outlined clearly in the thesis.
Owing to the SIR, the proposed antennas can effectively miniaturize the circuit size and maintain as approximate the antenna gain as the conventional one. Without degrading the antenna gain severely, the stepped-impedance dipole antenna shows 27.5% length reduction in comparison to the conventional uniform half-wavelength one. Furthermore, the measured gain variation is of 2.6–4.2 dBi. Front-to-back ratios are better than 10 dB in the operating band of WLAN application 802.11 b/g. The transition (Klopfenstein Taper) can be adjusted properly to obtain a measured 10-dB return loss bandwidth of 28%. All of the design concepts, simulated results, and measured results are presented and elaborated clearly in the thesis.
[1] S. Uda, “Wireless beam of short electric waves,” J. IEE. (Japan), pp. 273–282, Mar. 1926
[2] H. Yagi, “Beam transmission of ultra short waves,” Proc. IRE, vol.26, pp.715–741, June 1928.
[3] W.-H. Tu, “Microstrip-coplanar stripline-fed Yagi-Uda antenna” in Proc. IEEE Int. AP-S Symp.San Diego, CA, Jul. 2008, pp. 1–4.
[4] K. Mizuno, K. Uehara, H. Nishimura, T. Yonekura, and T. Suzuki, “Yagi-Uda array for millimeter-wave imaging,” Electron. Lett., vol. 27, no. 2, pp. 108–109, Jul. 1991.
[5] J. Huang and A. C. Densmore, “Microstrip Yagi array antenna for mobile satellite vehicle application,” IEEE Trans. Antennas Propagat., vol. 39, no.7, pp.1024–1030, Jul. 1991.
[6] R. A. Alhalabi and G. M. Rebeiz, “High-gain Yagi-Uda antennas for millimeter-wave switched -beam systems” IEEE Trans. Antennas Propagat., vol. 57, no. 11, pp. 3672–3676, Nov. 2009.
[7] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194–2196, Nov. 1998.
[8] C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. New York: Wiley 2005.
[9] R. Waterhouse, Printed Antennas for Wireless Communications, 1st ed. Hoboken, NJ: Wiley 2007.
[10] H. K. Kan, R. B. Waterhouse, A. M. Abbosh, and M. E. Bialkowski, “Simple broadband planar CPW-fed quasi-Yagi antenna,” IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 18–20, 2007.
[11] H. K. Kan, R. B. Waterhouse, A. M. Abbosh, M. E. Bialkowski, and K. L. Chung, “A simple broadband planar quasi-Yagi antenna,” in TENCON 2006. IEEE Region 10 Conf. Hong Kong, Nov. 2006, pp. 1–3.
[12] K. M. K. H. Leong, Y. Qian, and T. Itoh, “First demonstration of a conductor backed coplanar waveguide fed quasi-Yai antenna,” in Proc. IEEE Int. AP-S Symp.,Salt Lake City, UT, 2000, pp. 1432–1435.
[13] J. Sor, Y. Qian, and T. Itoh, “Coplanar waveguide fed quasi-Yagi antenna,” Electron. Lett., vol. 36, no. 1, pp. 1–2, Jan. 2000.
[14] H. K. Kan, A. M. Abbosh, R. B. Waterhoush, and M. E. Bialkowski, “Compact broadband coplanar waveguide-fed curved quasi-Yagi antenna,” IET Microw. Antennas Propag., vol. 1, no. 3, pp. 572–574, Jun. 2007.
[15] S. X. Ta, B. Kim, H. Choo, and I. Park, “Slot-line-fed quasi-Yagi antenna,” in Proc. Int. Symp. on Antennas Propag. and EM Theory, Guangzhou, China, Dec. 2010, pp. 307–310.
[16] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, “A broadband planar quasi-yagi antenna,” IEEE Trans. Antennas Propagat., vol. 50, no. 8, pp. 1158–1160, Aug. 2002.
[17] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “A uniplanar quasi-Yagi antenna with wide bandwidth and low mutual coupling characteristics,” in Proc. IEEE Int. AP-S Symp., Orlando, FL, Aug. 1999, pp. 924–927.
[18] G. Zheng, A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, “Simplifed feed for modified printed Yagi antenna,” Electron. Lett., vol. 40, no. 8, pp. 464–466, Apr. 2004.
[19] S. E. Melais and T. M. Weller, “A quasi-Yagi antenna backed by a metal reflector,” IEEE Trans. Antennas Propagat., vol. 56, no. 12, pp. 3868–3872, Dec. 2008.
[20] Z. Li, X. Zhang, Q. Guo, and J. Wang, “A quasi-Yagi microstrip antenna with simplified feeding structure,” in Proc. Int. Symp. on Antennas Propag. and EM Theory, Guangzhou, China, Dec. 2010, pp. 860–863.
[21] L. Zhu and K. Wu, “Model-Based characterization of CPS-fed printed dipole for innovative design of uniplanar integrated antenna,” IEEE Microw. Guided Wave Lett., vol. 9, no. 9, pp. 342–344, Sep. 1999.
[22] D. Woo, Y. Kim, K. Kim, and Y. Cho, “A simplified design of quasi-Yagi antennas using the new microstrip-to-CPS Transitions,” in Proc. IEEE Int. AP-S Symp., Hawaii, Jun. 2007, pp. 781–784.
[23] Y. Kim, D. Woo, K. Kim, and Y. Cho, “ A new ultra-wideband microstrip-to-CPS transition,” in IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, HI, Jun. 2007, pp. 1563–1566.
[24] W.-H. Tu and K. Chang, “Wide-band microstrip-to-coplanar stripline/slotline transtions,” IEEE Trans. Microw. Theory Tech. vol. 54, no. 3, pp. 1084–1089, Mar. 2006.
[25] S.-J. Zeng, Y.-H. Tseng, and W.-H. Tu, “Design of compact and low mutual-coupling quasi-Yagi antenna using stepped-width resonator,” in Proc International Symposium on Antennas and Propagation (ISAP), Nagoya, JP, 2012.
[26] S.-Y. Chen and P. Hsu, “Broadband microstrip-fed modified quasi-Yagi antenna,” in Proc. IEEE/ACES Int. Conf. Wireless Commun. Applied Comput. Electromagn., Apr. 2005, pp.208–211.
[27] J. Sahaya Kulandai Raj, J. Fahlbusch, and J. Schoebel, “A beam switching three layer reconfigurable antenna,” in Proc. Microw. Conf. (GeMic), Germany, Mar. 2012, pp. 1–4.
[28] M. T. Ali, M. Y. M. Zain, N. Ramli, A. L. Yusof, and M. N. M. Tan, “Frequency reconfigurable quasi-Yagi microstrip antenna with beam shaping for wimax application,” in Proc. RF and Microw. Conf. (RFM), Seremban, Malaysia, Dec. 2011, pp. 434–438.
[29] M. T. Ali, M. R. Kamarudin, M. N. M. Tan, and T. A. Rahman, “ Reconfigurable beam shaping antenna with wilkinson power divider at 5.8 GHz,” in Proc. RF and Microw. Conf. (RFM), Kuala Lumpur, Malaysia, Dec. 2008, pp. 436–440.
[30] F. Cladwell, J. S. Kenney, and I. A. Ingram, “Design and Implementation of a Switched-beam Smart Antenna for an 802.11b Wireless Access Point,” in Proc. Radio and Wireless Conf. (RAWCON), Aug. 2002, pp. 55–58.