跳到主要內容

簡易檢索 / 詳目顯示

研究生: 方啟鑫
Chi-Shin Fang
論文名稱: 高反射p型氮化鎵歐姆接觸之研究
Low-resistance ohmic contacts with high reflectivity on p-type GaN
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 43
中文關鍵詞: 高反射歐姆接觸
外文關鍵詞: ohmic contact, reflectivity
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究將針對在p型氮化鎵(p–type GaN)材料上進行高反射率歐姆接觸電極之製作,將紫外光波段上有高反射率的金屬材料,鋁(Al)、銀 (Ag)應用於歐姆接觸電極合金中,在與傳統之p型氮化鎵歐姆接觸電極合金 Ni/Au 相比較,新的金屬合金材料不但可以得到低阻值的歐姆接觸,並且可以提供良好的反射率,極適合作為覆晶發光二極體高紫光反射率接觸電極之應用。
    在我們製作電極之前,需先將鎂原子在p型氮化鎵薄膜材料中活化,使其呈現高導電性,活化條件為750℃、30分鐘時具有最高濃度,其值約為1.49×1017 cm-3。而我們嘗試的金屬組合中,Ni/Ag/Au、Pd/Al/Ti/Au、Pd/Pt/Al/Ti/Au、Pd/Ni/Al/Ti/Au都有不錯的電性表現,其特徵阻值(specific contact resistance)分別為1.28×10-3(ohm-cm2)、6.69×10-3(ohm-cm2)、9.58×10-3(ohm-cm2)、1.01×10-2(ohm-cm2),而對應到370nm的反射率則分別為74%、75%、65%、70%。再針對反射率有上較佳表現的金屬組合探討其熱穩定性,其中Ni/Ag/Au、Pd/Al/Ti/Au、Pd/Pt/Al/Ti/Au有明顯變差的趨勢,因此我們結論為Pd/Ni/Al/Ti/Au為應用上較佳的金屬組合。


    In this letter, we reported a low-resistance, thermally stable and high-reflectivity Pd(3 nm)/Ni(2 nm)/Al(150 nm)/Ti(20 nm)/Au(30 nm) Ohmic contact to p-type GaN: Mg (1.5×1017 cm-3 ). The specific contact resistance of the contact is as low as 1.23×10-2 ohm-cm2. After 48 hours annealing in a N2 ambient at 500℃, the specific contact resistance keeps below 1.5 ×10-2 ohm-cm2. The effect of Ni barrier layer of improvement of thermal stability in Pd(3 nm)/Ni(2 nm)/Al(150 nm)/Ti(20 nm)/Au(30 nm) is proposed and discussed in this work. Reflectivity of Pd(3 nm)/Ni(2 nm)/Al(150 nm)/Ti(20 nm)/Au(30 nm) Ohmic contact in the wavelength range of 350 to 400 nm is about 70%, which is expected to be beneficial for the fabrication of high efficiency nitride-based ultraviolet flip-chip light-emitting diodes.

    第一章 介紹……………………………………………………………01 第二章 金屬-半導體接面原理與實驗流程 2.1 歐姆接觸原理與傳輸線模型理論 …………………………03 2.2 p型歐姆接觸之半導體製程…………………………………09 2.2.1 試片表面清洗處理……………………………………10 2.2.2 p型氮化鎵材料活化 …………………………………11 2.2.3 黃光微影製程…………………………………………12 2.2.4 去除表面氧化層………………………………………13 2.2.5 蒸鍍金屬層及圖形剝離(lift off)…………………14 2.3 p型歐姆接觸及反射層的金屬選擇…………………………16 第三章 電流-電壓特性分析與討論 …………………………………19 3.1 Ni/Ag/Au 金屬電極…………………………………………19 3.2 Ni/Al/Ti/Au 金屬電極 ……………………………………23 3.3 Pd/Ag/Au 金屬電極…………………………………………25 3.4 Pd/Al/Ti/Au 金屬電極 ……………………………………26 第四章 反射率與熱穩定性探討………………………………………28 4.1 介紹 …………………………………………………………28 4.2 Ni/Ag/Au 金屬電極…………………………………………29 4.3 Pd/Al/Ti/Au 金屬電極 ……………………………………31 4.3.1 Pd/Pt/Al/Ti/Au 金屬電極……………………………33 4.3.2 Pd/Ni/Al/Ti/Au 金屬電極……………………………35 第五章 結論……………………………………………………………41 參考文獻 ………………………………………………………………42

    1. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, Appl. Phys. Lett. 78, 3379 (2001)
    2. A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad J. Appl. Phys. 93, 1087 (2002)
    3. W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street Appl. Phys. Lett. 68, 667 (1996)
    4. V. M. Bermudez, J. Appl. Phys. 80, 1190 (1996)
    5. Hadis Morkoc, Nitride Semiconductors and Devices, Springer, pp.196 (1999)
    6. Ralph Williams, Modern GaAs Processing Methods, Artech House, Boston‧London, pp.235 (1990)
    7. Shuji Nakamura, The Blue Laser Diode, Springer, New York (1997)
    8. S.-W. kim, J.-M. Lee, C. H., N.-M. Park, H.-S. Kim, I.-H. Lee, and S.-J. Park, Appl.Phys.Lett.76, 3079 (1999)
    9. S.-J. Chang and Y.-K. Su, Appl.Phys.Lett. 78, 312 (2001)
    10. D. Qiao, L. S. Yu, S. S. Lau, J. Y. Lin, H. X. Jiang, and T. E. Haynes J. Appl. Phys. 88, 4196 (2000)
    11. J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech Appl. Phys. Lett. 76, 415 (1999)
    12. J.-S. Jang, and T.-Y. Seong J. Appl. Phys. 88, 3064 (2000)
    13. H. W. Jang, K. H. Kim, J. K. Kim, S.-W. Hwang, J. J. Yang, K. J. Lee, S.-J. Son, and J.-L. Lee Appl. Phys. Lett. 79, 1822 (2001)
    14. C.-S. Lee, Y.-J. Lin, and C.-T. Lee Appl. Phys. Lett. 79, 3815 (2001)
    15. L.-C. Chen, F. R. Chen, J. J. Kai, Li Chang, J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, C.-Y. Chen, and K.-K. Shih J. Appl. Phys. 86, 3826 (1999)
    16. J..S. Kwak, J.Cho, S. Chae, O. H. Nam, C. Sone, and Y. Park J. Appl. Phys. 40, 6221 (2001)
    17. J. K. Kim, J.-L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim J. Appl. Phys. 73, 2953 (1998)
    18. C.-F. Chu, C. C. Yu, Y. K. Wang, J. Y. Tsai, F. I. Lai, and S. C. Wang Appl. Phys. Lett. 77, 3423 (2000)
    19. T. Arai, H. Sueyoshi, Y. Koide, M. Moriyama, and M. Murakami J. Appl. Phys. 89, 2826 (2000)
    20. J.-S. Jang, I.-S. Chang, H.-K. Kim, T.-Y. Seong, S. Lee, and S.-J. Park Appl. Phys. Lett. 74, 70 (1998)
    21. L. Zhou, w. Lanford, A. T. Ping, I. Adesida, J. W. Yang, and A. Khan Appl. Phys. Lett. 76, 3451 (2000)
    22. V. Adivarahan, A. Lunev, M. A. Khan, J. Yang, G. Simin, M. S. Shur, and R. Gaska Appl. Phys. Lett. 78, 2781 (2001)
    23. American Society for Metals, Metals handbook 8th ed. V.1, Metals Park, Ohio, pp. 1197-1230 (1976)
    24. David R. Lide, Handbook of Chemistry and Physics, Boca Raton: CRC pp. 12-130 (2001)
    25. 李秉璋、王正和 金屬鍍膜材料簡介 工業材料研究所 (2000)
    26. 池田直昭 三菱重工技報 vol.39 p.334 (2002)
    27. James E. Raynolds JAP vol.93 p.5351 (2003)WO 01 47038 A (LUMILEDS LIGHTING U.S. LLC) 28 June 2001 (28.06.2001) the whole document
    29. C. T. Lee, and H.-W. Kao Appl. Phys. Lett. 76, 2364 (2000)
    30. Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc Appl. Phys. Lett. 68, 1672 (1996)

    QR CODE
    :::