| 研究生: |
毛奕群 Yi-Chun Mao |
|---|---|
| 論文名稱: |
以濺鍍法製作p-type單晶鍺薄膜於太陽能電池之應用 Fabrication of P-type Monocrystalline Germanium Thin Films by Magnetron Sputtering for the Application of Solar Cell |
| 指導教授: |
陳昇暉
Sheng-Hui Chen 曹昭陽 Chao-Yang Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 濺鍍 、鍺薄膜 、p-type鍺薄膜 、太陽能電池 |
| 外文關鍵詞: | sputtering, germanium thin film, p-type germanium thin film, solar cell |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
濺鍍製程擁有快速、安全、環保、低成本考量等製程優勢,近年來快速在太陽能電池領域興起並且到矚目。本論文成功的以濺鍍法於矽基板上製作單晶鍺薄膜以及單晶鍺硼薄膜,藉由薄膜分析與元件製作,討論單晶鍺薄膜以及單晶鍺硼鍺薄膜應用於太陽能電池上之可行性。
論文第一部分為薄膜分析,我們在矽(100)朝矽(111)傾斜0°、4°、6°,以及高品質矽(100)這四種矽基板上濺鍍厚度約580 nm的鍺薄膜,藉此探討基板傾斜角度與基板品質對磊晶鍺薄膜的影響。實驗結果顯示薄膜品質將依基板選擇而有所改變,在濺鍍功率125 W,製程溫度400℃,氬氣流量10 sccm,工作壓力5 mTorr的製程環境下,在6°傾斜切角的矽基板上成長的鍺薄膜品質最好,其差排缺陷密度為9.8"×" 〖"10" 〗^"5" 〖"cm" 〗^"-3" 。
第二部分為元件製作,選擇在鍺靶材上擺放硼顆粒以及使用鍺硼合金靶材這兩種方式,以濺鍍法製作p-type單晶鍺薄膜。摻雜鍺薄膜的品質與硼顆粒擺放量多寡有關,在擺放量12.5%與25%的比較下,硼顆粒擺放量較少,獲得的摻雜鍺薄膜品質較好。同時在玻璃基板上量測鍺硼薄膜電性,其摻雜濃度最高可達〖"10" 〗^"21" 〖"cm" 〗^"-3" ,顯示硼顆粒的添加使鍺薄膜達重摻雜效果。接著我們使用鍺硼比例99/1wt%的合金靶材,製作電阻率低於0.01 ohm-cm,摻雜濃度達〖"10" 〗^"19" 〖"cm" 〗^"-3" 的單晶鍺硼薄膜,並加以製作成鍺矽太陽能電池,驗證p-type鍺薄膜的摻雜效果,經由爐管退火改善p-type鍺薄膜品質,元件最佳表現可得開路電壓261.83 mV,短路電流10.78 mA,填充因子54.4%,轉換效率1.92%。
This work presents an intrinsic and a boron-doped monocrystalline Ge (i-Ge and p-type Ge) thin films were deposited on silicon substrates by using the method of magnetron sputtering. XRD, Raman, AFM, EPD and Hall measurement were used to investigate the qualities of Ge thin films. And the post annealing process was chosen to improve the Ge thin film qualities. In the first part of this work, the monocrystalline i-Ge film was deposited with the aim to integrate Ge and GaAs on a Si substrate as a multi-junction solar cell. Four kinds of Si (100) substrates including 0°, 4°, 6° off-cut angles and two different grades of Si substrates were chosen to investigate the crystalline properties of the Ge thin films. The i-Ge thin film deposited on Si (100) substrate with 6° off-cut angle toward (111) after post annealing at 700℃ has the lowest threading dislocation density nearly 9.8"×" 〖"10" 〗^"5" 〖"cm" 〗^"-3" . In the second part, the monocrystalline p-type Ge thin films were fabricated by putting boron grains on a Ge target and Ge/B alloy target, respectively. P-type Ge thin film with the resistivity < 0.01 ohm-cm and the carrier concentration "~ 5×" 〖"10" 〗^"19" " " 〖"cm" 〗^"-3" were achieved after post annealing. Finally Ge/Si solar cell was fabricated with the best device performances of "V" _"OC" 261.83 mV, "I" _"SC" 10.78 mA, FF 54.4%, and conversion efficiency 1.92%.
1. Renewable energy,
Available from: https://en.wikipedia.org/wiki/Renewable_energy
2. R. Perez, and M. Perez, A fundamental look at energy reserves for the planet. The IEA SHC Solar Update, 2009. 50: p. 2-3.
3. M.A. Green著,曹昭陽,狄大衛,李秀文譯,太陽電池工作原理,技術與系統應用,五南出版社 (2009)
4. D.M. Chapin, C. Fuller and G. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 1954(25): p. 676-677.
5. K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi and Y. Kuwano. More than 16% solar cells with a newHIT'(doped a-Si/nondoped a-Si/crystalline Si) structure. in Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE. 1991. IEEE.
6. J. Zhao, A. Wang and M.A. Green, 24· 5% Efficiency silicon PERT cells on MCZ substrates and 24· 7% efficiency PERL cells on FZ substrates. Progress in Photovoltaics: Research and Applications, 1999. 7(6): p. 471-474.
7. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier and M. Powalla, Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%. physica status solidi (RRL)-Rapid Research Letters, 2014. 9999.
8. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo and S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015: p. aaa9272.
9. Sharp IMM triple-junction compound solar cell,
Available from: http://sharp-world.com/corporate/news/130424.html
10. P. Chiu, D. Law, R. Woo, S. Singer, D. Bhusari, W. Hong, A. Zakaria, J. Boisvert, S. Mesropian and R. King. 35.8% space and 38.8% terrestrial 5J direct bonded cells. in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th. 2014. IEEE.
11. F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T.N. Tibbits, E. Oliva, G. Siefer, M. Schachtner and A. Wekkeli, Wafer bonded four‐junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 2014. 22(3): p. 277-282.
12. Tandem Cells,
Available from: http://www.pveducation.org/pvcdrom/solar-cell-operation/ tandem-cells
13. K. Tanabe, A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures. Energies, 2009. 2(3): p. 504-530.
14. The bandgap energies are plotted as a function of the lattice constants of major III-V and II-VI materials,
Available from: http://asumbe.eas.asu.edu/research_Highlights.htm
15. 陳冠翔,在矽基板上成長單晶鍺薄膜與矽鍺薄膜之研究,國立中央大學碩士論文 (2014)
16. C. Claeys, and E. Simoen, Germanium-based technologies: from materials to devices. 2011: Elsevier.
17. W. Yeh, A. Matsumoto, K. Sugihara and H. Hayase, Sputter Epitaxial Growth of Flat Germanium Film with Low Threading-Dislocation Density on Silicon (001). ECS Journal of Solid State Science and Technology, 2014. 3(10): p. Q195-Q199.
18. 施敏,李明逵著,曾俊元譯,半導體元件物理與製作技術(第三版),交通大學出版社 (2013)
19. 國家實驗研究院儀器科技研究中心,真空技術與應用,財團法人國家實驗研究院儀器科技研究中心 (2010)
20. 李正中,薄膜光學與鍍膜技術(第七版),藝軒圖書出版社 (2012)
21. M. Currie, S. Samavedam, T. Langdo, C. Leitz and E. Fitzgerald, Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Applied Physics Letters, 1998. 72(14): p. 1718-1720.
22. M. Kawano, S. Yamada, K. Tanikawa, K. Sawano, M. Miyao and K. Hamaya, An ultra-thin buffer layer for Ge epitaxial layers on Si. Applied Physics Letters, 2013. 102(12): p. 121908.
23. J. Mantey, W. Hsu, J. James, E. Onyegam, S. Guchhait and S. Banerjee, Ultra-smooth epitaxial Ge grown on Si (001) utilizing a thin C-doped Ge buffer layer. Applied Physics Letters, 2013. 102(19): p. 192111.
24. J.M. Hartmann, A.M. Papon, V. Destefanis and T. Billon, Reduced pressure chemical vapor deposition of Ge thick layers on Si(001), Si(011) and Si(111). Journal of Crystal Growth, 2008. 310(24): p. 5287-5296.
25. Y.H. Tan, and C.S. Tan, Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition. Thin Solid Films, 2012. 520(7): p. 2711-2716.
26. D. Chen, Z. Xue, X. Wei, G. Wang, L. Ye, M. Zhang, D. Wang and S. Liu, Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD. Applied Surface Science, 2014. 299: p. 1-5.
27. Misfit Dislocations,
Available from: http://userweb.eng.gla.ac.uk/douglas.paul/SiGe/misfit.html
28. T.H. Loh, H.S. Nguyen, C.H. Tung, A.D. Trigg, G.Q. Lo, N. Balasubramanian, D.L. Kwong and S. Tripathy, Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultrahigh vacuum chemical vapor deposition. Applied Physics Letters, 2007. 90(9): p. 092108.
29. K.H. Lee, Y.H. Tan, A. Jandl, E.A. Fitzgerald and C.S. Tan, Comparative Studies of the Growth and Characterization of Germanium Epitaxial Film on Silicon (001) with 0° and 6° Offcut. Journal of Electronic Materials, 2013. 42(6): p. 1133-1139.
30. Z. Liu, X. Hao, A. Ho-Baillie, C.-y. Tsao and M.A. Green, Cyclic thermal annealing on Ge/Si(100) epitaxial films grown by magnetron sputtering. Thin Solid Films, 2015. 574: p. 99-102.
31. X-ray diffraction – Bruker D8 Discover,
Available from: https://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover
32. T. Konya, X-Ray Thin-Film Measurement Techniques III. High Resolution X-Ray Diffractometry. The Rigaku Journal, 2009. 25(2): p. 1-8.
33. Raman spectroscopy,
Available from: https://en.wikipedia.org/wiki/Raman_spectroscopy.
34. V. Shah, A. Dobbie, M. Myronov and D.R. Leadley, High quality relaxed Ge layers grown directly on a Si (001) substrate. Solid-State Electronics, 2011. 62(1): p. 189-194.
35. Annealing,
Available from: https://en.wikipedia.org/wiki/Annealing_(metallurgy).
36. RCA clean,
Available from: https://en.wikipedia.org/wiki/RCA_clean
37. 黃鼎育,IV族半導體基板鈍化層研究,國立中央大學碩士論文 (2014)
38. H. Wang, J. Cuppens, E. Biermans, S. Bals, L. Fernandez-Ballester, K.O. Kvashnina, W. Bras, M.J. Van Bael, K. Temst and A. Vantomme, Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si. Journal of Physics D: Applied Physics, 2012. 45(3): p. 035301.
39. H. Kroemer, Polar-on-nonpolar epitaxy. Journal of Crystal Growth, 1987. 81(1): p. 193-204.
40. S.F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi and N. Otsuka, Gallium arsenide and other compound semiconductors on silicon. Journal of Applied Physics, 1990. 68(7): p. R31.
41. Y. Li, G. Salviati, M. Bongers, L. Lazzarini, L. Nasi and L. Giling, On the formation of antiphase domains in the system of GaAs on Ge. Journal of crystal growth, 1996. 163(3): p. 195-202.
42. K. Schulte, A. Wood, R. Reedy, A. Ptak, N. Meyer, S. Babcock and T. Kuech, Heteroepitaxy of GaAs on (001)⇒ 6° Ge substrates at high growth rates by hydride vapor phase epitaxy. Journal of Applied Physics, 2013. 113(17): p. 174903.
43. C.-Y. Tsao, J.W. Weber, P. Campbell, P.I. Widenborg, D. Song and M.A. Green, Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications. Applied Surface Science, 2009. 255(15): p. 7028-7035.
44. 穿透式電子顯微鏡,
Available from: http://highscope.ch.ntu.edu.tw/wordpress/?p=1599
45. B. Bathey and M. Cretella, Solar-grade silicon. Journal of Materials Science, 1982. 17(11): p. 3077-3096.
46. Refining silicon,
Available from: http://www.pveducation.org/pvcdrom/manufacturing/refining-silicon
47. ImageJ,
Available from: http://imagej.nih.gov/ij/
48. C.-Y. Tsao, J. Huang, X. Hao, P. Campbell and M.A. Green, Formation of heavily boron-doped hydrogenated polycrystalline germanium thin films by co-sputtering for developing p+ emitters of bottom cells. Solar Energy Materials and Solar Cells, 2011. 95(3): p. 981-985.
49. C.-Y. Tsao, J.W. Weber, P. Campbell, G. Conibeer, D. Song and M.A. Green, In situ low temperature growth of poly-crystalline germanium thin film on glass by RF magnetron sputtering. Solar Energy Materials and Solar Cells, 2010. 94(9): p. 1501-1505.
50. C.-Y. Tsao, J. Huang, X. Hao, P. Campbell and M.A. Green, Heavily Boron-Doped Hydrogenated Polycrystalline Ge Thin Films Prepared by Cosputtering. Electrochemical and Solid-State Letters, 2010. 13(10): p. H354.
51. Y. Liu, Y. Sun and A. Rockett, A new simulation software of solar cells—wxAMPS. Solar Energy Materials and Solar Cells, 2012. 98: p. 124-128.
52. Y. Huang, X.M. Shen and X.F. Wei. Simulation of InAIN/Si Single-Heterojunction Solar Cells Using wxAMPS. in Applied Mechanics and Materials. 2014. Trans Tech Publ.
53. F. Mesa, V. Ballesteros and A. Dussan, Growth Analysis and Numerical Simulation of Cu_3BiS_3 Absorbing Layer Solar Cell through the wxAMPS and Finite Element Method. Acta Physica Polonica A, 2014. 125(2): p. 385-387.
54. Y. Liu, Y. Sun and A. Rockett. Batch simulation of solar cells by using Matlab and wxAMPS. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012. IEEE.
55. A. Parisi, L. Curcio, V. Rocca, S. Stivala, A.C. Cino, A.C. Busacca, G. Cipriani, D. La Cascia, V. Di Dio and R. Miceli, Thin film CIGS solar cells, photovoltaic modules, and the problems of modeling. International Journal of Photoenergy, 2013. 2013.
56. Standard Solar Spectra,
Available from: http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
57. D. Eaglesham and M. Cerullo, Dislocation-free stranski-krastanow growth of Ge on Si (100). Physical Review Letters, 1990. 64(16): p. 1943.
58. W. Hu, B. Cheng, C. Xue, S. Su, Z. Liu, Y. Li and Q. Wang, Epitaxy of Ge on offcut Si substrate for growth of In0. 01Ga0. 99As. 2011.
59. S. Huang, C. Li, Z. Zhou, C. Chen, Y. Zheng, W. Huang, H. Lai and S. Chen, Depth-dependent etch pit density in Ge epilayer on Si substrate with a self-patterned Ge coalescence island template. Thin Solid Films, 2012. 520(6): p. 2307-2310.
60. C.-Y. Tsao, J. Wong, J. Huang, P. Campbell, D. Song and M.A. Green, Structural dependence of electrical properties of Ge films prepared by RF magnetron sputtering. Applied Physics A, 2010. 102(3): p. 689-694.
61. B. Schröder, A. Annen, T. Drüsedau, H. Freistedt, P. Deak and H. Oechsner, Influence of oxygen incorporation on the properties of magnetron sputtered hydrogenated amorphous germanium films. Applied physics letters, 1993. 62(16): p. 1961-1963.
62. 王佑庭,以濺鍍法與表面鈍化處理製作矽異質接面太陽能電,國立中央大學碩士論文 (2013)
63. 李京樺,以矽硼合金靶製作異質接面太陽能電池,國立中央大學碩士論文 (2014)