跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭乃棋
Nai-chi Cheng
論文名稱: 聚苯胺固態吸附劑對二氧化碳吸附之實驗研究
指導教授: 周正堂
cheng-tung chou
楊閎舜
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 144
中文關鍵詞: 二氧化碳吸附煙氣聚苯胺變溫吸附
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據聯合國氣候變化政府間專家委員會(IPCC)調查指出人為造成溫室
    效應的氣體主要以二氧化碳為主。在台灣地區,二氧化碳的排放最主要來
    自於工業上化石燃料的燃燒,所以如何濃縮及回收電廠煙氣中的二氧化碳
    變成為解決此問題的首要之務。
    本論文首先利用實驗的方式,使用微量天平量測聚苯胺固態吸附劑其
    CO2 飽和吸附量,再藉由Langmuir-Freundlich isotherm 等溫吸附平衡關係式
    利用數學分析的方式,獲得等溫吸附平衡曲線圖及其參數。接著以單塔進
    行貫流曲線實驗,藉由改變不同的操作條件(如:塔內溫度、進料組成及進
    料流速),觀察其對貫流曲線的影響。
    最後本研究以電廠煙氣的組成為目標,利用單塔變溫吸附程序進行二
    氧化碳濃縮純化。使用進料組成為15.03%CO2 和84.97%N2 的混合氣體,藉
    由改變不同的操作條件(如:進料壓力,吸附溫度及脫附溫度),探討二氧化
    碳濃度和回收率的變化,進而找出最佳操作條件。


    According to the investigation of Intergovernmental Panel on Climate
    Change (IPCC), carbon dioxide is the most important greenhouse gas from
    human activities. CO2 released into the atmosphere in Taiwan are mainly
    attributed to fossil fuel combustion, so the concentration and recovery of CO2
    from power plant flue gas is the first important step in solving CO2 problem.
    This study obtained single component adsorption equilibrium data of CO2
    on solid polyaniline sorbent by used Micro-Balance Thermo D-200. Then this
    study obtained the isotherm curve and the parameters by numerical method. The
    adsorption is expressed by the Langmuir-Freundlich isotherm. Then
    breakthrough curve experiment was done with single bed by changing the
    different operating conditions (bed temperature, feed composition, feed flow rate,
    etc) to observe their influence on breakthrough curve.
    Finally, we experimental study the use of temperature swing adsorption
    process in power plant flue gas. We used mixture gas which is composed of
    15.03% CO2 and 84.97% N2 to investigate the change of CO2 concentration and
    recovery by changing the different operating conditions(feed gas pressure,
    adsorption temperature, desorption temperature, etc), and then found the best
    operating conditions.

    摘要...................................................... i Abstract ................................................ ii 誌謝 ................................................... iii 目錄 .................................................... iv 圖目錄 ................................................. viii 表目錄 .................................................. xii 第一章、緒論 ............................................... 1 第二章、簡介及文獻回顧 ....................................... 4 2-1 吸附現象簡介............................................ 4 2-2 變溫吸附法的基本原理 .................................... 5 2-3 吸附劑及其選擇性 ........................................ 6 2-4 再生方法 .............................................. 7 2-5 等溫平衡吸附曲線 ........................................ 8 2-6 貫流曲線 ............................................. 10 2-7 研究背景 ............................................. 11 2-7-1 胺基表面改質處理技術之相關文獻 ......................... 11 2-7-2 變溫吸附程序處理煙道氣之相關文獻 ........................ 13 第三章、實驗設備及方法 ...................................... 15 3-1 聚苯胺固態CO2 吸附劑之製備 .............................. 15 3-1-1 化學藥品 ........................................... 15 3-1-2 矽膠固著苯胺聚合物吸附劑製備流程 ........................ 15 3-2 等溫吸附平衡曲線實驗 ................................... 17 3-2-1 實驗裝置 ........................................... 17 3-2-2 實驗步驟 ........................................... 22 3-2-3 天平校正 ........................................... 23 3-2-4 空白實驗 ........................................... 23 3-3 貫流曲線實驗........................................... 24 3-3-1 實驗裝置、各部規格及特性 .............................. 24 3-3-2 實驗系統參數與操作條件 ................................ 28 3-3-3 實驗步驟 ........................................... 29 3-4 變溫吸附實驗........................................... 30 3-4-1 實驗裝置、各部規格及特性 .............................. 33 3-4-2 實驗步驟 ........................................... 37 第四章、實驗結果與討論 ...................................... 40 4-1 等溫吸附平衡曲線實驗結果與討論 ........................... 40 4-1-1 空白實驗結果 ....................................... 41 4-1-2 平衡吸附重量實驗結果 ................................. 46 4-1-3 等溫吸附平衡曲線的回歸 ................................ 50 4-2 貫流曲線實驗結果與討論 .................................. 54 4-2-1 塔內溫度對貫流行為的影響 .............................. 55 4-2-2 進料組成對貫流行為的影響 .............................. 62 4-2-3 進料流速對貫流行為的影響 .............................. 66 4-3 變溫吸附實驗結果與討論 .................................. 67 4-3-1 吸附、脫附溫度及進料壓力對變溫吸附程序Step3 產物中CO2濃度之影響 ......................................................... 70 4-3-2 吸附、脫附溫度及進料壓力對變溫吸附程序Step3 產物中CO2回收率之影響 ...................................................... 78 4-3-3 吸附、脫附溫度及進料壓力對變溫吸附程序Step4 產物中CO2濃度之影響 ......................................................... 86 4-3-4 吸附、脫附溫度及進料壓力對變溫吸附程序Step4 產物中CO2回收率之影響 ...................................................... 94 4-3-5 吸附、脫附溫度及進料壓力對變溫吸附程序總產物中CO2濃度之影響 ........................................................ 102 4-3-6 吸附、脫附溫度及進料壓力對變溫吸附程序總產物中CO2回收率之影響 ........................................................ 110 第五章、結論 ............................................. 118 參考文獻 ................................................ 120 附錄A、Thermo Cahn D-200 操作流程 ........................ 124 附錄B GC 操作步驟 ........................................ 126

    1. S.M. Benson and F.M. Orr Jr., “Carbon dioxide capture and storage”, MRS
    Bull., vol. 33, pp. 303–305, 2008.
    2. K.M.K. Yu, I. Curcic, J. Gabriel and S.C.E. Tsang, “Recent advances in
    CO2 capture and utilization”, ChemSusChem, vol. 1, pp. 893–899, 2008.
    3. N. Shigemoto, T. Yanagihara, S. Sugiyama and H. Hayashi, “Bench-scale
    CO2 recovery from moist flue gases by various alkali carbonates supported
    on activated carbon”, J. Chem. Eng. Jpn., vol. 38, pp. 711–717, 2005.
    4. F. Su, C. Lu, S. Kuo and W. Zeng, “Adsorption of CO2 on an
    amine-functionalized Y-type zeolite”, Energy Fuels, vol. 24, pp.
    1441–1448, 2010.
    5. O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia and Y. Espidel, “Reversible
    adsorption of carbon dioxide on amine surface-bonded silica gel”, Inorg.
    Chim. Acta, vol. 240, pp.183–189, 1995.
    6. S. Kim, J. Ida, V.V. Guliants and J.Y. Lin, “Tailoring pore properties of
    MCM-48 silica for selective adsorption of CO2”, J. Phys. Chem. B, vol.
    109, pp. 6287–6293, 2005.
    7. M.B. Yue, L.B. Sun, Y. Cao, Z.J. Wang, Y. Wang, Q. Yu and J.H. Zhu,“Promoting the CO2 adsorption in the amine-containing SBA-15 by
    hydroxyl group.” Microporous Mesoporous Mater. vol. 114, pp.74–81,
    2008.
    8. S. Lee, T.P. Filburn, M. Gray, J.W. Park and H.J. Song, “Screening test of
    solid amine sorbents for CO2 capture”, Ind. Eng. Chem. Res., vol. 47, pp.
    7419–7423, 2008.
    9. M.L. Gray, K.J. Champagne, D. Fauth, J.P. Baltrus and H. Pennline,
    “Performance of immobilized tertiary amine solid sorbents for the capture
    of carbon dioxide”, Int. J. Greenhouse Gas Control, vol. 2, pp. 3–8, 2008.
    10. X. Xu, C. Song, J.M. Andersen, B.G. Miller and A.W. Scaroni, “Novel
    polyethylenimine-modified mesoporous molecular sieve of MCM-41 type
    as high-capacity adsorbent for CO2 capture”, Energy Fuels, vol. 16, pp.
    1463–1469, 2002
    11. X. Xu, C. Song, B.G. Miller and A.W. Scaroni, “Influence of moisture on
    CO2 separation from gas mixture by a nanoporous adsorbent based on
    polyethylenimine-modified molecular sieve MCM-41”, Ind. Eng. Chem.
    Res., vol. 44, pp. 8113–8119, 2005.
    12. X. Ma, X. Wang and C. Song, ““Molecular basket” sorbent for separation
    of CO2 and H2S from various gas streams”, J. Am. Chem. Soc., vol. 131,pp. 5777–5783, 2009.
    13. W.J. Son, J.S. Choi and W.S. Ahn, “Adsorptive removal of carbon dioxide
    using polyethylenimine-loaded mesoporous materials”, Micropor. Mesopor.
    Mater., vol. 113, pp. 31–40, 2008.
    14. C. Chen, S.T. Yang, W.S. Ahn and R. Ryoo, “Amine-impregnated silica
    monolith with a hierarchical pore structure: enhancement of CO2 capture
    capacity”, Chem. Commun., vol. 24, pp. 3627–3629, 2009.
    15. O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia and Y. Espidel, “Reversible
    adsorption of carbon dioxide on amine surface-bonded silica gel”, Inorg.
    Chim. Acta, vol. 240, pp. 183–189, 1995.
    16. H.Y. Huang, R.T. Yang, D. Chinn and C.L. Munson, ”Amine-grafted
    MCM-48 and silica xerogel as superior sorbents for acidic gas removal
    from natural gas” Ind. Eng. Chem. Res., vol. 42, pp. 2427–2433, 2003.
    17. L. Wang, L. Ma, A. Wang, Q. Liu and T. Zhang, “CO2 adsorption on
    SBA-15 modified by aminosilane”, Chin. J. Catal., vol. 28, pp. 805–810,
    2007.
    18. J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye and Y. Shi, “Adsorption of carbon
    dioxide on organically functionalized SBA-16”, Micropor. Mesopor. Mater.,
    vol. 116, pp. 394–399, 2008.19. J. Merel, M. Clausse and F. Meunier, “Carbon Dioxide Capture by Indirect
    Thermal Swing Adsorption Using 13X Zeolite”, Environ. Prog., vol. 25, pp.
    327–333, 2006.
    20. J. Merel, M. Clausse and F. Meunier, “Experimental Investigation on CO2
    Post-Combustion Capture by Indirect Thermal Swing Adsorption Using
    13X and 5A Zeolites”, Ind. Eng. Chem. Res., vol. 47, pp.209–215, 2008.
    21. M. Clausse, J. Merel and F. Meunier, “Numerical Parametric Study on CO2
    Capture by Indirect Thermal Swing Adsorption”, Int. J. Greenhouse Gas
    Control, Vol. 5, pp. 1206- 1213, 2011.
    22. N. Tlili, G. Grevillot and C. Vallieres, “Carbon Dioxide Capture and
    Recovery by means of TSA and/ or VSA”, Int. J. Greenhouse Gas Control,
    vol. 3, pp. 519-527, 2009.
    23. B. Dutcher, H. Adidharma and M. Radosz, “Carbon Filter Process for
    Flue-Gas Carbon Capture on Carbonaceous Sorbents: Steam-Aided
    Vacuum Swing Adsorption Option”, Ind. Eng. Chem. Res., vol. 50, pp.
    9696-9703, 2011
    24. M.G. Plaza, S. Garcia, F. Rubiera, J.J. Pis, C. Pevida, “Post-combustion
    CO2 Capture with a Commercial Activated Carbon: Comparison of
    Different Regeneration Strategies”, Chem. Eng. J., vol. 163, pp. 41-47,
    2010.

    QR CODE
    :::