跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許舒普
Shu-Pu Hsu
論文名稱: 以鋼筋後降伏低反覆循環試驗探討 梁高拉力鋼筋細長比之研究
Investigation on the slenderness ratio(s/db) of high strength rebar by means of low cycle fatigue testing
指導教授: 王勇智
Yung-Chih Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 160
中文關鍵詞: New RC高拉力鋼筋低周次疲勞挫曲
外文關鍵詞: New RC, High strength reinforcement, Low cycle fatigue, Buckling
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前規範只規定設計梁柱構件時,使用一般強度SD420以下鋼筋的剪力筋間距,故本文研究主要是測試高拉力鋼筋SD790,先行利用萬能試驗機做實驗,以伸長計控制鋼筋受拉與受壓應變之反覆振幅,來模擬梁柱構件受地震力,探討耐震設計中橫向箍筋反挫曲(anti-buckling)間距。
    測試鋼筋採用D16與D13(一般強度為SD420、高強度為SD790),主因是SD690大號鋼筋(如D25)適夾具以供測試。故觀察SD790-D13鋼筋與SD420-D13鋼筋,在不同間距(L/db =5.5、6)受到不同振幅作用(εa =±0.5、±1、±2、2.6,-0.4、3.6,-0.4%),以及SD790-D16鋼筋與SD420-D16鋼筋在不同間距(L/db =4.5、5、6)受到不同振幅作用下(εa =±0.5、±1、±2、2.6,-0.4、3.6,-0.4%),觀察鋼筋的壽命迴圈數(N¬f)。利用鋼筋壽命迴圈數結果計算材料常數(M、m),以及觀察鋼筋在不同細長比下受反覆荷重的挫曲、斷裂情形。
    測試結果顯示,SD790鋼筋第一迴圈與最終斷裂迴圈受力差異較S420鋼筋為小,但SD790鋼筋斷裂較無預警,其斷裂面較為平整。本文亦分析鋼筋測試數據求鋼筋之有效長度係數k,以及在非線性荷載階段之切線模數(Et),以計算反挫曲之細長比s/db。結果顯示,¬SD420鋼筋細長比應小於6,如現行ACI318規範之規定,而SD790鋼筋細長比應小於4,故推算SD690-D25鋼筋細長比宜小於5為佳。


    The purpose of the study is to discuss the moderate anti-buckle spacing of SD790/690 rebar. This is because the present standard only specifies the spacing of transverse reinforcement for SD420 bars. Thus, the experiment used the universal testing machine with different bar slenderness ratio to simulate the column components subjected to earthquake loading.
    Test specimens adopted 16mm and13mm diameter (common strength SD420 & high strength SD790). That is, SD690 bars normally used for larger diameter like D25 are not available to the testing machine at present. Therefore, SD790-D13 and SD420-D13 bars with different slenderness(s/db =5.5、6) and different amplitudes(εa =±0.5、±1、±2、2.6,-0.4、3.6,-0.4%), and SD790-D16 and SD420-D16 bars with different spacing(s/db =4.5、5、6) and different amplitudes(εa =±0.5、±1、±2、2.6,-0.4、3.6,-0.4%), are provided for the testing. By means of a series of test program, some parameters such as the number of life cycles, behavior of bar fracture and suitable bar slenderness ratio under the cyclic loading will be found.
    Test results show the load difference between the first cycle and the final cycle for SD790 bars is smaller than that for SD420 bars. However, the SD790 bars are fractured without warning, and the breaking surface is smooth. This article also analyzes the rebars anti-buckling spacing by measuring the effective length coefficient(k) and non-linear steel modulus(Et) of the testing bars. Thus the slenderness ratio(s/db) of anti-buckling spacing for the rebars can be calculated. It repeals the SD420 bars of s/db shall be smaller than 6 as recent ACI318 suggested. The SD790 bars of slender ratio shall be less than 4.Therefore, the SD690 bars normally used for New RC main bars shall be less than 5.

    摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 XI 圖目錄 XIII 符號說明 XXV 第一章 緒論 1 第二章 文獻回顧 2 2.1有關鋼筋挫曲研究 2 2.1.1箍筋間距規定 3 2.1.2 鋼筋受拉壓行為 3 2.2相關鋼筋低週期疲勞研究 4 2.2.1包辛格效應 4 2.2.2有關疲勞之經驗式 4 2.2.3相關研究 5 2.3梁構件垂直變位與曲率關係 8 2.3.1撓曲變位 8 2.3.2剪力變位 9 2.3.3滑移變位 10 2.3.4降伏後的總垂直變位 11 第三章 試體規劃與實驗步驟 12 3.1 試驗規劃 12 3.2規劃結果 13 3.3 試驗設備 14 3.3.1加載系統 14 3.3.2量測系統 14 3.4 試驗方法與步驟 15 3.4.1鋼筋裁切 15 3.4.2鋼筋固定 15 3.4.3軟體設定 16 3.4.4架設伸長計於鋼筋上 16 3.4.5試驗執行 16 3.5 試驗數據處理 17 3.5.1壽命迴圈數Nf 17 3.5.2 材料系數M、m 17 3.5.3 合適主筋繫筋間距 17 第四章 試驗結果 18 4.1 單向拉力與單向壓力 18 4.2遲滯迴圈圖 20 4.3試驗後鋼筋斷裂情形 20 4.4各參數對壽命迴圈數的影響 21 4.4.1 鋼筋直徑 22 4.4.2鋼筋強度 23 4.4.3間距大小 23 4.4.4振幅大小 24 4.5材料系數M、M 24 4.6 合適主筋繫筋間距之探討 25 第五章 結論與建議 27 5.1結論 27 5.2建議 28 參考文獻 29 附錄A 中性軸預測 111 計算之中性軸cmeas 111 預測之中性軸cpre 113 A.1 DR=3%,#10受拉 114 A.2 DR=3%,#8受拉 114 A.3 DR=6%,#10受拉 115 A.4 DR=6%,#8受拉 115 附錄B 曲率預測 116 #10受拉,計算ΦY,MEAS 116 #8受拉,計算ΦY,MEAS 116 計算之變位△U,MEAS 117 計算之曲率ΦU,MES 117 預測之曲率ΦU,PRED 118 B.1 DR=3%,#10受拉 118 B.2 DR=3%,#8受拉 118 B.3 DR=6%,#10受拉 119 B.4 DR=6%,#8受拉 119 附錄C鋼筋及混凝土表面應變預測 120 混凝土應變ΕCU 120 鋼筋應變ΕS,#10 、ΕS,#8及混凝土表面應變ΕC,MES 120 B.1 DR=3%,#10受拉 120 B.2 DR=3%,#8受拉 121 B.3 DR=6%,#10受拉 121 B.4 DR=6%,#8受拉 121 附錄D 材料系數M、M計算 122 附錄E ET值與不發生挫曲之間距計算 128 SD790-D16 128 SD420-D16 129 SD790-D13 129 SD420-D13 130

    [1] American Concrete Institute (2014), Building Code Requirements for Reinforced Concrete (ACI 318-14) and Commentary, ACI Committee 318, Detroit, Michigan.
    [2] NIST GCR 14-917-30 (2014), Use of High-Strength Reinforcement in Earthquake-Resistant Concrete Structures, National Institute of Standards and Technology,.
    [3] J. Moehle (2015), Seismic Design of Reinforced Concrete Buildings, McGraw-Hill
    [4] NZS3101(2006), Concrete Structual Standard, The design of Concrete Structures & Commentary on the Design of Concrete Structures, New Zenland Standard.
    [5] Brown, J., and Kunnath, S. K. (2004) ,“Low Cycle Fatigue Failure of Reinforcing Steel Bars,” ACI Materials Journal, V. 101, No. 6, Nov.-Dec., 2004, pp. 457-466.
    [6] Mander, J. B., Panthaki, F. D., and Kasalanati, A. (1994) , “Low-Cycle Fatigue Behavior of Reinforcing Steel,” J. Mater. Civ. Eng., N.6, pp. 453-468.

    [7] Kunnath, S. K., Kanvinde, A., Xiao, Y., and Zhang, G. (2009), “Effects of Buckling and Low Cycle Fatigue on Seismic Performance of Reinforcing Bars and Mechanical Couplers for Critical Structural Member,” Technical Report, California Department of Transportation 59A0539.
    [8] Kashani, M. M., Barmi, A. K., and Malinova, V.S. (2015), “Influence of Inelastic Bucking on Low-Cycle Fatigue Degradation of Reinforcing Bars,” Construction and Building Materials, N.94, pp. 644-655.
    [9] ACI Innovation Task Group 4 (2007), Report on Structural Design & Detailing for High Strength Concrete in Moderate to High Seismic Applications, American Concrete Institute.
    [10] 楊政穎 (2016),「高拉力SD690鋼筋截斷設計之研究」,碩士論文,王勇智教授指導,國立中央大學土木系,2016年10月。

    QR CODE
    :::