跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃瑜雯
Yu-Wen Huang
論文名稱: 阿拉伯芥根細胞核之有絲分裂原蛋白質激酶與蛋白質酪胺酸磷酸化受銅處理之變化
Nuclear Protein Phosphorylation under Metal Stress of Copper in the Root of Arabidopsis thaliana : the Aspects of MAPKs and tyrosine phosphorylation
指導教授: 董啟功
Chii-Gong Tong
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 90
語文別: 中文
論文頁數: 49
中文關鍵詞: 阿拉伯芥有絲分裂原蛋白質激酶酪胺酸蛋白質激酶
外文關鍵詞: Arabidopsis thaliana, tyrosine phosphorylated proteins, MAP kinase
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    銅是植物生長所需的微量必須元素。但是當其過量時反而會引起
    逆境的產生。細胞在化學逆境如過量金屬存在之㆘,會經由特定的訊
    息傳遞路徑來調控基因表現。在動物細胞㆗和逆境相關的兩個主要訊
    息傳遞因子為有絲分裂原蛋白質激酶及酪胺酸蛋白質激酶。其受逆境
    活化後,再活化其受質如轉錄因子,以調控特定基因的表現。在植物
    ㆗目前仍無探討金屬離子與有絲分裂原蛋白質激酶及酪胺酸蛋白質
    酶關聯性的文獻發表。本論文是利用西方點墨法及膠內激酶活性分析
    來探討在阿拉伯芥根部細胞核㆗的有絲分裂原蛋白質激酶及酪胺酸
    磷酸化情形。結果偵測到㆒特定存在細胞核㆗54 kDa 的有絲分裂原
    蛋白質激酶及㆕個酪胺酸磷酸化蛋白質受到過量銅處理而被磷酸
    化。阿拉伯芥根部細胞經專㆒性高的有絲分裂原蛋白質激酶激酶抑制
    劑-PD98059 處理後發現,此54 kDa核內有絲分裂原蛋白質激酶並不
    會受到其處理而磷酸化受到抑制,所以推測其㆖游的有絲分裂原蛋白
    質激酶激酶可能不為AtMEK1/ATMKK2。


    Abstract
    Copper is an essential micronutrient in plants. However, it causes
    stress response when presents in excess of amount. Cells cope with such
    chemical stress by signaling to the cellular responses including to activate
    particular transcription factors and regulate specific gene expression in
    nuclei. Two of the major stress signaling mechanisms are MAPKs and
    PTKs. None of the reports have studied how excess metal manipulate
    MAPKs or PTKs in plant nuclear compartment. In this thesis, using
    immunochemical analyses and in-gel kinase assays results clearly
    confirm the presence of a 54-kDa copper-induced nuclear MAPK and
    several tyrosine phosphorylated nuclear proteins in the roots of
    Arabidopsis thaliana. Treatment of PD98059 could not inactivate this
    unique nuclear MAPK. This indicates that its upstream MAPKK is not
    AtMEK1/AtMKK2.

    目錄 中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅱ 目錄………………………………………………………………Ⅲ 縮寫與全名對照表……………………………………………....Ⅴ 圖目錄…………………………………………………………....Ⅵ 壹、緒論........................................................................................ 1 一、研究動機及緣由............................................................... 1 二、銅對植物的影響............................................................... 1 三、逆境與植物訊息傳遞之間的關係................................... 2 四、有絲分裂原蛋白質激酶................................................... 2 五、酪胺酸蛋白質激酶........................................................... 5 貳、材料與方法............................................................................. 8 一、阿拉伯芥培養................................................................... 8 二、根部細胞核之分離........................................................... 9 三、西方點墨法....................................................................... 9 四、膠內激酶活性分析......................................................... 12 五、有絲分裂原蛋白質激酶激酶抑制劑PD98059的使用13 六、化學藥品......................................................................... 13 七、儀器設備......................................................................... 14 參、結果....................................................................................... 15 一、阿拉伯芥根部細胞核之分離......................................... 15 二、以組蛋白H3抗體確定是否分離到阿拉伯芥細胞核.. 15 三、過量銅活化阿拉伯芥根部細胞核㆗之有絲分裂原蛋白質 激酶......................................................................................... 16 四、PD98059對有絲分裂原蛋白質激酶活性之影響......... 17 五、過量銅影響阿拉伯芥根部細胞核之酪胺酸磷酸化..... 17 肆、討論....................................................................................... 18 一、阿拉伯芥根部細胞核之分離......................................... 18 二、以組蛋白H3抗體確定分離到阿拉伯芥細胞核.......... 19 三、過量銅活化阿拉伯芥根部細胞核㆗之有絲分裂原蛋白質 激酶......................................................................................... 20 四、PD98059對有絲分裂原蛋白質激酶活性之影響......... 23 五、過量銅影響阿拉伯芥根部細胞核之酪胺酸磷酸化..... 24 伍、參考文獻............................................................................... 25 圖目錄........................................................................................... 30 附錄............................................................................................... 42

    伍、參考文獻
    N. Halfter, U. and Chua, N. H. (1994). Cloning and biochemical
    characterization of a plant protein kinase the phosphorylation serine,
    threonine, and tyrosine. J. Biol. Chem. 269: 31626-31629.
    Asai, T. Plotnikova, J. Willmann, M. R. Chiu, W. L. Gomez-Gomez, L.
    Boller, T. Ausubel, F. M. and Sheen, J. (2002). MAP kinase signalling
    cascade in Arabidopsis innate immunity. Nature 415: 977 - 983.
    Barizza, E. Loschiavo, F. Terzi, M. and Filippini, F. (1999). Evidence
    suggesting protein tyrosine phosphorylation in plants depends on the
    developmental conditions.FEBS Lett.. 26: 191-194.
    Boger, P. and Sandmann, G. (1980). Copper mediated lipid peroxidation
    process in phtosyntheic membrance. Plant Physiol. 66: 797-800.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation
    microgram quantities of protein utilizing the principle of protein-dye
    binding. Anal. Biochem. 72: 248-254
    Clemens S. (2001). Molecular mechanisms of plant metal tolerance and
    homeostasis. Planta. 212: 475-86.
    Desikan, R. Clarke, A. Hancock, J. T. and Neill, S. T. (1999). H2O2
    activates a MAPK kinase-like enzyme in Arabidopsis Thaliana suspension
    culture. J. Exp. bot. 50: 1863-1866
    Desikan, R. Clarke, A. Atherfold, P. Hancock, J. T. and Neill, S. J.
    1999). Harpin induces mitogen-activated protein kinase activity during
    defence responses in Arabidopsis thaliana suspension cultures. Planta 210:
    103.
    Desikan, R. Hancock, J. T. Ichimura, K. Shinozaki, K. and Neill, S. J.
    2001). Harpin induces activation of the Arabidopsis mitogen-activated
    protein kinase AtMPK4 and ATMPK6. plant Physiol. 126: 1579-1587.
    Guo, Y. L. and Roux, S. J. (1995). Partial purification and characterization
    of an enzyme from Pea nuclei with protein tyrosine phosphatase activity.
    Plant Physiol. 107: 167-175
    Gustin, M. C. Albertyn, J. Alexander, M. and davenport, K. (1998).
    MAP kinase pathways in the yeast Saccharomyces cerevisiae. Micro. Mol.
    Biol. Rev. 62: 1264-1300
    Heldin, C. H. and Purton, M. (1998). Signal transduction. Stanley Thornes
    Ltd. Wellington. pp4
    Henriques, F. S. (1989). Effect of copper deficiency on the photosynthetic
    apparatus of sugar beet. Plant Physiol. 135: 453-458
    Henriques, F. S. and Fernandes, J. C. (1991). Biochemical, physiological,
    and structutal effects of excess copper in plants. Bot. Rev. 57: 246-273
    Hooper, S. Wilson, R. Paterson, H. F. and Marshall, C. J. (1998).
    Nuclear export if the stress-activated protein kinase p38 mediated by its
    substrate MAPKAP kinase-2. Curr. Biol. 8: 1049-1057
    Hopkins, W. G. (1999). Introduction to plant physiology. John wiley &
    Sons, Inc., New York. pp65-73.
    Hoshi, M. Nishida, E. and Sakai, H. (1988). Activation of a
    Ca2+-inhibitable protein kinase that phosphorylates microtubule-associated
    protein 2 in Vitro by growth factors, phorbol esters, and serum in quiescent
    cultured human fibroblasts. J. Biol. Chem. 263: 5396-5401
    Huang, Y. Li, H. Gupta, R. Morris, P. C. Luan, S. and Kieber, J. J.
    2000). ATMPK4, an Arabidopsis homolog of mitogen-activated protein
    kinase, is activated in vitro by AtMEK1 through threonine phosphorylation.
    Plant Physiol. 122: 1301-1310
    Ichimura, K. Mizoguchi, T. Irie, K. Morris, P. Giraudat, J. Matsumoto,
    K. Shinozaki, K. (1998). Isolation of ATMEKK1 (a MAP kinase kinase
    kinase)-interacting proteins and analysis of a MAP kinase cascade in
    27
    Arabidopsis. Biochem. Biophys. Res. Commun. 18: 532-543
    Ichimura, K. Mizoguchi, T. Yoshida, R. Yuasa, T and Shinozaki, K.
    (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinase
    ATMPK4 and ATMPK6. The plnat J. 24: 655-665.
    Jonak, C. Ligterink, W. and Hirt, H. (1999). MAP kinase in plant signal
    transduction. Cell Mol. Life Sci. 55: 204-213
    Kastori, R. Petrovic, M and Petrovic, N. (1992). Effect of excess lead,
    cadmium, copper, and zine on water relations in sunflower. J. Plant Nutrition
    15: 2427-2439
    Kovtun, Y. Chiu, W. L. Tena, G. and Sheen, J. (2000). Functional analysis
    of oxidative stress-activated mitogen-activated protein kinase cascade in
    plants. Proc. Natl. Acad. Sci. USA 97: 2940-2945
    Ligterink, W. Kroj, T. Nieden, U. Z. Hirt, H. and Scheel, D. (1997).
    Receptor-mediated activation of a MAP kinase in pathogen defense of plants.
    Science 276: 2054-2057
    Lolkema, P. C. Donker, M. H. Schouten, A. J. and Ernst, W. H. O. (1984).
    The possible role of metallothioneins in copper tolerance of Silene cucubalus.
    Planta 162: 174-179
    Luan, C. M. Gonzalez, C. A. and Trippi, V. S. (1994). Oxidative damage
    caused by an excess of copper in oat leaves. Plant Cell Physiol. 35: 11-15
    Marinez-Zapater, J. M. and Salinas, J. (1998). Arabidopsis protocols.
    Humana Press Inc., Totowa. pp28.
    Mira, H. Martinez, N. and Penarrubia, L. (2002). Expression of a
    vegetative-storage-protein gene from Arabidopsis is regulated by copper,
    senescence and ozone. Planta 214: 939-46
    Mizoguchi, T. Hayashida, N. Yamaguchi-Shinozaki, K. Kamada, H. and
    Shinozaji, K. (1993). ATMPKs: a gene family of plant MAP kinase in
    Arabidopsis Thaliana. FEBS Lett. 336: 440-444
    28
    Ren, D. and Zhang, S. (2002). Cell death mediated by MAPK is associated
    with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 4:
    559-565.
    Romeis, T. Zhang, S. Klessig, D. F. Hirt, H. Jones, J. D. (1999). Rapid
    Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell
    cultures and leaves: convergence of resistance gene, elicitor, wound, and
    salicylate responses. Plant cell 11: 273-287.
    Samet, J. M. Graves, L. M. Quay, J. Dailey, L. A. Devlin, R. B. Ghio, A.
    J. Wu, W. Bromberg, P. A. Reed, W. (1998). Activation of MAPKs in
    human bronchial epithelial cells exposed to metals. Am. J. Physiol. 275:
    L551-L558
    Sun, X. Majumder, P. Shioya, H. Wu, F. Kumar, S. Weichselbaum, R.
    Kharbanda, S. and Kufe, D. (2000). Activation of the cytoplasmic c-Ab1
    tyrosine kinase by reactive oxygen species. J boil. Chem. 18: 17237-17240
    Tena, G. Asau, T. Chiu, W. L. and sheen, J. (2001). Plant
    mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol.
    4: 392-400
    Tong, C. G. Kendrick, R. E. and Roux, S. J. (1996). Red light-induced
    apperance of phosphotyrosine-like epitopes on nuclear proteins from pea
    (Pisum sativum L.) Plumules. photochemistry and photobiology 64: 863-866.
    Wrzaczek, M. and Hirt, H. (2001). Plant MAP kinase pathways: how many
    and what for? Biol. Cell 93: 81-87
    Xu, Q. Fu, H. H. Gupta, R. Luan, S. (1998). Molecular characterization of
    a tyrosine-specific protein phosphatase encoded by a stress-responsive gene
    in Arabidopsis. Plant Cell 10: 1769
    Yuasa, T. Mizoguchi, T and Shinozaki, K (2001). Oxidative stress
    activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell
    Physiol. 42: 1012-1016.
    Zhang, S. and Klessig, D. F. (2001). MAPK cascades in plant defense
    signaling. Trends in Plant Sci. 6: 521-527
    Zwerger, K. and Hirt, H. (2001). Recent advances in plant MAP kinase
    signaling. J. Biol. Chem. 382: 1123-1131

    QR CODE
    :::