| 研究生: |
黃瑜雯 Yu-Wen Huang |
|---|---|
| 論文名稱: |
阿拉伯芥根細胞核之有絲分裂原蛋白質激酶與蛋白質酪胺酸磷酸化受銅處理之變化 Nuclear Protein Phosphorylation under Metal Stress of Copper in the Root of Arabidopsis thaliana : the Aspects of MAPKs and tyrosine phosphorylation |
| 指導教授: |
董啟功
Chii-Gong Tong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 阿拉伯芥 、有絲分裂原蛋白質激酶 、酪胺酸蛋白質激酶 |
| 外文關鍵詞: | Arabidopsis thaliana, tyrosine phosphorylated proteins, MAP kinase |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
銅是植物生長所需的微量必須元素。但是當其過量時反而會引起
逆境的產生。細胞在化學逆境如過量金屬存在之㆘,會經由特定的訊
息傳遞路徑來調控基因表現。在動物細胞㆗和逆境相關的兩個主要訊
息傳遞因子為有絲分裂原蛋白質激酶及酪胺酸蛋白質激酶。其受逆境
活化後,再活化其受質如轉錄因子,以調控特定基因的表現。在植物
㆗目前仍無探討金屬離子與有絲分裂原蛋白質激酶及酪胺酸蛋白質
酶關聯性的文獻發表。本論文是利用西方點墨法及膠內激酶活性分析
來探討在阿拉伯芥根部細胞核㆗的有絲分裂原蛋白質激酶及酪胺酸
磷酸化情形。結果偵測到㆒特定存在細胞核㆗54 kDa 的有絲分裂原
蛋白質激酶及㆕個酪胺酸磷酸化蛋白質受到過量銅處理而被磷酸
化。阿拉伯芥根部細胞經專㆒性高的有絲分裂原蛋白質激酶激酶抑制
劑-PD98059 處理後發現,此54 kDa核內有絲分裂原蛋白質激酶並不
會受到其處理而磷酸化受到抑制,所以推測其㆖游的有絲分裂原蛋白
質激酶激酶可能不為AtMEK1/ATMKK2。
Abstract
Copper is an essential micronutrient in plants. However, it causes
stress response when presents in excess of amount. Cells cope with such
chemical stress by signaling to the cellular responses including to activate
particular transcription factors and regulate specific gene expression in
nuclei. Two of the major stress signaling mechanisms are MAPKs and
PTKs. None of the reports have studied how excess metal manipulate
MAPKs or PTKs in plant nuclear compartment. In this thesis, using
immunochemical analyses and in-gel kinase assays results clearly
confirm the presence of a 54-kDa copper-induced nuclear MAPK and
several tyrosine phosphorylated nuclear proteins in the roots of
Arabidopsis thaliana. Treatment of PD98059 could not inactivate this
unique nuclear MAPK. This indicates that its upstream MAPKK is not
AtMEK1/AtMKK2.
伍、參考文獻
N. Halfter, U. and Chua, N. H. (1994). Cloning and biochemical
characterization of a plant protein kinase the phosphorylation serine,
threonine, and tyrosine. J. Biol. Chem. 269: 31626-31629.
Asai, T. Plotnikova, J. Willmann, M. R. Chiu, W. L. Gomez-Gomez, L.
Boller, T. Ausubel, F. M. and Sheen, J. (2002). MAP kinase signalling
cascade in Arabidopsis innate immunity. Nature 415: 977 - 983.
Barizza, E. Loschiavo, F. Terzi, M. and Filippini, F. (1999). Evidence
suggesting protein tyrosine phosphorylation in plants depends on the
developmental conditions.FEBS Lett.. 26: 191-194.
Boger, P. and Sandmann, G. (1980). Copper mediated lipid peroxidation
process in phtosyntheic membrance. Plant Physiol. 66: 797-800.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal. Biochem. 72: 248-254
Clemens S. (2001). Molecular mechanisms of plant metal tolerance and
homeostasis. Planta. 212: 475-86.
Desikan, R. Clarke, A. Hancock, J. T. and Neill, S. T. (1999). H2O2
activates a MAPK kinase-like enzyme in Arabidopsis Thaliana suspension
culture. J. Exp. bot. 50: 1863-1866
Desikan, R. Clarke, A. Atherfold, P. Hancock, J. T. and Neill, S. J.
1999). Harpin induces mitogen-activated protein kinase activity during
defence responses in Arabidopsis thaliana suspension cultures. Planta 210:
103.
Desikan, R. Hancock, J. T. Ichimura, K. Shinozaki, K. and Neill, S. J.
2001). Harpin induces activation of the Arabidopsis mitogen-activated
protein kinase AtMPK4 and ATMPK6. plant Physiol. 126: 1579-1587.
Guo, Y. L. and Roux, S. J. (1995). Partial purification and characterization
of an enzyme from Pea nuclei with protein tyrosine phosphatase activity.
Plant Physiol. 107: 167-175
Gustin, M. C. Albertyn, J. Alexander, M. and davenport, K. (1998).
MAP kinase pathways in the yeast Saccharomyces cerevisiae. Micro. Mol.
Biol. Rev. 62: 1264-1300
Heldin, C. H. and Purton, M. (1998). Signal transduction. Stanley Thornes
Ltd. Wellington. pp4
Henriques, F. S. (1989). Effect of copper deficiency on the photosynthetic
apparatus of sugar beet. Plant Physiol. 135: 453-458
Henriques, F. S. and Fernandes, J. C. (1991). Biochemical, physiological,
and structutal effects of excess copper in plants. Bot. Rev. 57: 246-273
Hooper, S. Wilson, R. Paterson, H. F. and Marshall, C. J. (1998).
Nuclear export if the stress-activated protein kinase p38 mediated by its
substrate MAPKAP kinase-2. Curr. Biol. 8: 1049-1057
Hopkins, W. G. (1999). Introduction to plant physiology. John wiley &
Sons, Inc., New York. pp65-73.
Hoshi, M. Nishida, E. and Sakai, H. (1988). Activation of a
Ca2+-inhibitable protein kinase that phosphorylates microtubule-associated
protein 2 in Vitro by growth factors, phorbol esters, and serum in quiescent
cultured human fibroblasts. J. Biol. Chem. 263: 5396-5401
Huang, Y. Li, H. Gupta, R. Morris, P. C. Luan, S. and Kieber, J. J.
2000). ATMPK4, an Arabidopsis homolog of mitogen-activated protein
kinase, is activated in vitro by AtMEK1 through threonine phosphorylation.
Plant Physiol. 122: 1301-1310
Ichimura, K. Mizoguchi, T. Irie, K. Morris, P. Giraudat, J. Matsumoto,
K. Shinozaki, K. (1998). Isolation of ATMEKK1 (a MAP kinase kinase
kinase)-interacting proteins and analysis of a MAP kinase cascade in
27
Arabidopsis. Biochem. Biophys. Res. Commun. 18: 532-543
Ichimura, K. Mizoguchi, T. Yoshida, R. Yuasa, T and Shinozaki, K.
(2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinase
ATMPK4 and ATMPK6. The plnat J. 24: 655-665.
Jonak, C. Ligterink, W. and Hirt, H. (1999). MAP kinase in plant signal
transduction. Cell Mol. Life Sci. 55: 204-213
Kastori, R. Petrovic, M and Petrovic, N. (1992). Effect of excess lead,
cadmium, copper, and zine on water relations in sunflower. J. Plant Nutrition
15: 2427-2439
Kovtun, Y. Chiu, W. L. Tena, G. and Sheen, J. (2000). Functional analysis
of oxidative stress-activated mitogen-activated protein kinase cascade in
plants. Proc. Natl. Acad. Sci. USA 97: 2940-2945
Ligterink, W. Kroj, T. Nieden, U. Z. Hirt, H. and Scheel, D. (1997).
Receptor-mediated activation of a MAP kinase in pathogen defense of plants.
Science 276: 2054-2057
Lolkema, P. C. Donker, M. H. Schouten, A. J. and Ernst, W. H. O. (1984).
The possible role of metallothioneins in copper tolerance of Silene cucubalus.
Planta 162: 174-179
Luan, C. M. Gonzalez, C. A. and Trippi, V. S. (1994). Oxidative damage
caused by an excess of copper in oat leaves. Plant Cell Physiol. 35: 11-15
Marinez-Zapater, J. M. and Salinas, J. (1998). Arabidopsis protocols.
Humana Press Inc., Totowa. pp28.
Mira, H. Martinez, N. and Penarrubia, L. (2002). Expression of a
vegetative-storage-protein gene from Arabidopsis is regulated by copper,
senescence and ozone. Planta 214: 939-46
Mizoguchi, T. Hayashida, N. Yamaguchi-Shinozaki, K. Kamada, H. and
Shinozaji, K. (1993). ATMPKs: a gene family of plant MAP kinase in
Arabidopsis Thaliana. FEBS Lett. 336: 440-444
28
Ren, D. and Zhang, S. (2002). Cell death mediated by MAPK is associated
with hydrogen peroxide production in Arabidopsis. J. Biol. Chem. 4:
559-565.
Romeis, T. Zhang, S. Klessig, D. F. Hirt, H. Jones, J. D. (1999). Rapid
Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell
cultures and leaves: convergence of resistance gene, elicitor, wound, and
salicylate responses. Plant cell 11: 273-287.
Samet, J. M. Graves, L. M. Quay, J. Dailey, L. A. Devlin, R. B. Ghio, A.
J. Wu, W. Bromberg, P. A. Reed, W. (1998). Activation of MAPKs in
human bronchial epithelial cells exposed to metals. Am. J. Physiol. 275:
L551-L558
Sun, X. Majumder, P. Shioya, H. Wu, F. Kumar, S. Weichselbaum, R.
Kharbanda, S. and Kufe, D. (2000). Activation of the cytoplasmic c-Ab1
tyrosine kinase by reactive oxygen species. J boil. Chem. 18: 17237-17240
Tena, G. Asau, T. Chiu, W. L. and sheen, J. (2001). Plant
mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol.
4: 392-400
Tong, C. G. Kendrick, R. E. and Roux, S. J. (1996). Red light-induced
apperance of phosphotyrosine-like epitopes on nuclear proteins from pea
(Pisum sativum L.) Plumules. photochemistry and photobiology 64: 863-866.
Wrzaczek, M. and Hirt, H. (2001). Plant MAP kinase pathways: how many
and what for? Biol. Cell 93: 81-87
Xu, Q. Fu, H. H. Gupta, R. Luan, S. (1998). Molecular characterization of
a tyrosine-specific protein phosphatase encoded by a stress-responsive gene
in Arabidopsis. Plant Cell 10: 1769
Yuasa, T. Mizoguchi, T and Shinozaki, K (2001). Oxidative stress
activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell
Physiol. 42: 1012-1016.
Zhang, S. and Klessig, D. F. (2001). MAPK cascades in plant defense
signaling. Trends in Plant Sci. 6: 521-527
Zwerger, K. and Hirt, H. (2001). Recent advances in plant MAP kinase
signaling. J. Biol. Chem. 382: 1123-1131