跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阿市社
Aashish Gupta
論文名稱: 蛇夫座ρ星雲複合體心宿增四恆星形成區域中分子雲與年輕恆星的交互作用
Interplaying Between Young Stars and Molecular Clouds in the Rho Ophiuchi Star-Forming Complex
指導教授: 陳文屏
Wen-Ping Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 61
中文關鍵詞: 恒星形成
外文關鍵詞: Star Formation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部分在星系團中的新形成恆星被淹沒在巨大分子雲當中,這些系統是研究恆星形成的宏觀物理的自然實驗室。 其中一種可以理解恆星形成歷史的方法是同時研究其中年輕恆星以及他們所在的分子雲。 在138秒差距外的蛇夫座ρ星雲複合體有著高度氣體集中,且其中星體普遍在幼兒年紀(1-2百萬年),是作為研究良好的目標

    透過JCMT/SCUBA-2 850微米的影像,我們追蹤分子雲在蛇夫座ρ星雲複合體中心高密度區域的形象學。另外一方面,我們透過Gaia/eDR3的資料新增了4個在蛇夫座ρ星雲複合體的年輕星際星體。 利用這些資料集,我們分析了這些年輕星際族群在不同演化階段上相對不同氣體結構的空間與移動的關係

    我們發現演化到後期的星體傾向疏散,遠離氣體,且他們的運動暗示著他們誕生於原本的地方而後驅散了周遭氣體。 而且我們分析過後,這個年輕星團正處於初步塌縮階段,而低質量核心很可能是快速移動的族群。


    Most stars form in clusters embedded in giant molecular clouds and these systems are natural laboratories to study macrophysics of star formation. One way to get a comprehensive view of their star formation history is to concurrently study the two major components of these regions: young stellar objects (YSOs) and their natal molecular clouds. The $\rho$ Ophiuchus cloud complex, with its proximity ($\sim$138 pc) and a high concentration of gas and stellar population in infancy (1-2 Mys), is an excellent target for such a study.

    Using the deepest 850$\mu$m JCMT/SCUBA-2 image of the densest core of $\rho$ Ophiuchus, generated as part of the JCMT Transient Survey, we trace the morphology of molecular clouds in the region. On the other hand, we also compiled a catalogue of YSOs in the region using published lists in literature and four more members, identified using the Gaia/eDR3 astrometric data. Using these datasets, we diagnosed the spatial and kinematic correlation of the young stellar population, at different evolutionary stages, with respect to the gaseous structures.

    We found that the more evolved sources tend to be scattered further away from clouds and their kinematics suggest that they were formed in-situ and have dispersed the surrounding gas. Moreover, our analysis suggests that the young cluster is in the initial collapse phase and low mass cores are, likely, a faster-moving population.

    1. Introduction 1 2. Data and Analysis 3 3. Results and Discussion 11 4. Conclusions 23

    Allers K. N., Liu M. C., 2020, PASP, 132, 104401
    Beckwith S. V. W., Sargent A. I., Chini R. S., Guesten R., 1990, AJ, 99, 924
    Berry D. S., 2015, Astronomy and Computing, 10, 22
    Chambers K. C., et al., 2016, arXiv e-prints, p. arXiv:1612.05560
    Chapin E. L., Berry D. S., Gibb A. G., Jenness T., Scott D., Tilanus R. P. J., Economou
    F., Holland W. S., 2013, MNRAS, 430, 2545
    Chen H., Myers P. C., Ladd E. F., Wood D. O. S., 1995, ApJ, 445, 377
    Ducourant C., et al., 2017, A&A, 597, A90
    Dunham M. M.,
    et al.,
    2014,
    in Beuther H.,
    Klessen R. S.,
    Dullemond
    C. P., Henning T., eds, Protostars and Planets VI. p. 195 (arXiv:1401.1809),
    doi:10.2458/azu ̇uapress ̇9780816531240-ch009
    Dunham M. M., et al., 2015, ApJS, 220, 11
    Esplin T. L., Luhman K. L., 2020, AJ, 159, 282
    Gaia Collaboration Brown A. G. A., Vallenari A., Prusti T., de Bruijne J. H. J., Babusiaux
    C., Biermann M., 2020, arXiv e-prints, p. arXiv:2012.01533
    Herczeg G. J., et al., 2017, The Astrophysical Journal, 849, 43
    Hildebrand R. H., 1983, QJRAS, 24, 267
    Holland W. S., et al., 2013, MNRAS, 430, 2513
    Johnstone D., Wilson C. D., Moriarty-Schieven G., Joncas G., Smith G., Gregersen E.,
    Fich M., 2000, ApJ, 545, 327
    Lada C. J., Lada E. A., 2003, ARA&A, 41, 57
    Loren R. B., 1989, ApJ, 338, 902
    Mairs S., et al., 2016, MNRAS, 461, 4022
    Mairs S., et al., 2017, The Astrophysical Journal, 843, 55
    Mamajek E. E., 2008, Astronomische Nachrichten, 329, 10
    Molinari S., Schisano E., Faustini F., Pestalozzi M., di Giorgio A. M., Liu S., 2011, A&A,
    530, A133
    Monet D. G., et al., 2003, AJ, 125, 984
    Pattle K., et al., 2015, MNRAS, 450, 1094
    Pilbratt G. L., et al., 2010a, A&A, 518, L1
    Pilbratt G. L., et al., 2010b, A&A, 518, L1
    Proszkow E.-M., Adams F. C., Hartmann L. W., Tobin J. J., 2009, ApJ, 697, 1020
    Salji C. J., et al., 2015, MNRAS, 449, 1769
    Sills A., Rieder S., Scora J., McCloskey J., Jaffa S., 2018, MNRAS, 477, 1903
    Skrutskie M. F., et al., 2006, AJ, 131, 1163
    Stutz A. M., Gould A., 2016, A&A, 590, A2
    Sullivan T., Wilking B. A., Greene T. P., Lisalda L., Gibb E. L., Ejeta C., 2019, AJ, 158,
    41
    Tachihara K., Mizuno A., Fukui Y., 2000, ApJ, 528, 817
    Torres C. A. O., Quast G. R., da Silva L., de La Reza R., Melo C. H. F., Sterzik M., 2006,
    A&A, 460, 695
    Werner M. W., et al., 2004a, ApJS, 154, 1
    Werner M. W., et al., 2004b, ApJS, 154, 1
    White G. J., et al., 2015, MNRAS, 447, 1996
    Wilking B. A., Lada C. J., 1983, ApJ, 274, 698
    Wilking B. A., Meyer M. R., Robinson J. G., Greene T. P., 2005, AJ, 130, 1733
    Wilking B. A., Gagné M., Allen L. E., 2008, Star Formation in the ρ Ophiuchi Molecular
    Cloud. p. 351
    Williams J. P., de Geus E. J., Blitz L., 1994, ApJ, 428, 693
    Wright E. L., et al., 2010, AJ, 140, 1868

    QR CODE
    :::