| 研究生: |
伊凡緹 Indira Rizqita Ivanesthi |
|---|---|
| 論文名稱: | Adaptive tRNA recognition by aminoacyl-tRNA synthetases |
| 指導教授: |
王健家
Chien-Chia Wang 徐欣伶 Hsin-ling Hsu |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | One keyword per line 、tRNA identity 、prolyl-tRNA synthetase 、histidyl-tRNA synthetase 、tRNA recognition |
| 外文關鍵詞: | One keyword per line, tRNA identity, prolyl-tRNA synthetase, histidyl-tRNA synthetase, tRNA recognition |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Aminoacyl-tRNA synthetase (aaRSs) 是一群參與蛋白質合成的必要酵素,負責辨識並將特定的胺基酸接到其相應的tRNA上,是維持蛋白質轉譯準確性的關鍵步驟。本篇論文探討Histidyl-tRNA synthetases (HisRS) 與Prolyl-tRNA synthetases (ProRS) 在不同生物中如何與tRNA進行共演化,改變其結構以及辨識tRNA的機制以對應非典型tRNA。在一種嗜熱古菌Nanoarchaeum equitans中,由於缺乏RNase P修飾tRNA的5′端,且基因轉錄出的pre-tRNAHis並未帶有前導序列(Leader sequence),此種古菌的tRNAHis有別於其他物種,帶有5′三磷酸(ppp-tRNA)而非單磷酸。我們發現其HisRS (NeHisRS) 與典型HisRS類似,仍然偏好帶有5′單磷酸 (p-tRNA)的tRNAHis,且重度依靠G-1位點來辨識tRNAHis。特別的是,與典型原核生物HisRS不同,NeHisRS能夠有效地胺醯化帶有A73或C73的tRNAHis,顯示其對辨別tRNAHis的專一性有所放寬。ProRS存在兩種結構形式,分別是原核生物型(P-type),和真核生物/古菌型(E-type),通常細菌只會帶有一個P-type ProRS。有趣的是,蘇雲金芽孢桿菌 (Bacillus thuringiensis) 同時帶有這二種ProRS,分別為BtProRS1 (P-type) 與BtProRS2 (E-type)。我們發現,BtProRS1與BtProRS2雖同能識別P-type tRNAPro,但採用不同的識別機制,且BtProRS2對halofuginone (HF)及環境壓力的耐受性更強,顯示帶有第二種ProRS的演化優勢。在弓形蟲 (Toxoplasma gondii)中,單一一種E-type ProRS (TgProRS) 能胺醯化細胞質(E-type)及頂質體(P-type)兩種具有不同識別元素的tRNAPro。TgProRS的motif 2 loop突變會選擇性影響不同tRNA的識別。此外,細胞質tRNAPro對HF的敏感度高於頂質體tRNAPro。這些發現揭示aaRS如何透過不同識別策略因應tRNA多樣性,深化對酵素與tRNA共同演化的理解,並為設計具選擇性的抗微生物療法提供理論依據。
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that ensure translational fidelity by specifically recognizing and aminoacylating their cognate tRNAs. This dissertation explores the adaptive recognition mechanisms of histidyl- and prolyl-tRNA synthetases (HisRS and ProRS) in diverse organisms, highlighting structural and functional evolution in response to noncanonical tRNA features. In Nanoarchaeum equitans, which lacks RNase P and transcribes leaderless tRNAs with 5′-triphosphates (ppp-tRNAs), we show that its HisRS (NeHisRS) maintains a strong preference for tRNAHis with a 5′-monophosphate (p-tRNAHis) and relies heavily on G-1 for substrate recognition. Unlike typical prokaryotic HisRSs, NeHisRS charges tRNAHis with A73 or C73 with similar efficiency, indicating relaxed specificity for the discriminator base. ProRSs exist in two structural forms: prokaryotic (P-type) and eukaryotic/archaeal (E-type). In Bacillus thuringiensis, both types coexist. Although BtProRS1 and BtProRS2 recognize the same P-type tRNAPro, they use distinct mechanisms. BtProRS2 also shows greater resistance to hf and stress conditions, suggesting an adaptive advantage. In Toxoplasma gondii, a single E-type ProRS (TgProRS) aminoacylates both cytosolic and apicoplast tRNAPro isoacceptors with distinct identity elements. Mutations in TgProRS’s motif 2 loop selectively impact substrate recognition. Additionally, cytosolic tRNAPro charging is more sensitive to halofuginone than its apicoplast counterpart. These findings reveal how aaRSs evolve distinct recognition strategies to accommodate tRNA diversity, offering insights into enzyme–substrate coevolution and informing strategies for targeted antimicrobial development.
1. An S, Barany G, Musier-Forsyth K (2008) Evolution of acceptor stem tRNA recognition by class II prolyl-tRNA synthetase. Nucleic Acids Res 36: 2514-2521
2. Arif A, Jia J, Mukhopadhyay R, Willard B, Kinter M, Fox PL (2009) Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Molecular cell 35: 164-180
3. Banerjee B, Banerjee R (2014) Guanidine hydrochloride mediated denaturation of E. coli Alanyl-tRNA synthetase: identification of an inactive dimeric intermediate. Protein J 33: 119-127
4. Banerjee B, Banerjee R (2015) Urea Unfolding Study of E. coli Alanyl-tRNA Synthetase and Its Monomeric Variants Proves the Role of C-Terminal Domain in Stability. J Amino Acids 2015: 805681
5. Bartholow TG, Sanford BL, Cao B, Schmit HL, Johnson JM, Meitzner J, Bhattacharyya S, Musier-Forsyth K, Hati S (2014) Strictly conserved lysine of prolyl-tRNA Synthetase editing domain facilitates binding and positioning of misacylated tRNA(Pro.). Biochemistry 53: 1059-1068
6. Betat H, Long Y, Jackman JE, Mörl M (2014) From end to end: tRNA editing at 5'- and 3'-terminal positions. Int J Mol Sci 15: 23975-23998
7. Beuning PJ, Musier-Forsyth K (2001) Species-specific differences in amino acid editing by class II prolyl-tRNA synthetase. J Biol Chem 276: 30779-30785
8. Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266: 16965-16968
9. Burke B, Lipman RS, Shiba K, Musier-Forsyth K, Hou YM (2001) Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase. The Journal of biological chemistry 276: 20286-20291
10. Burke B, Yang F, Chen F, Stehlin C, Chan B, Musier-Forsyth K (2000) Evolutionary coadaptation of the motif 2--acceptor stem interaction in the class II prolyl-tRNA synthetase system. Biochemistry 39: 15540-15547
11. Carter CW, Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62: 715-748
12. Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD, Stathopoulos C, Amoutzias GD (2017) The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic acids research 45: 1059-1068
13. Chang CP, Lin G, Chen SJ, Chiu WC, Chen WH, Wang CC (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283: 30699-30706
14. Chang KJ, Lin G, Men LC, Wang CC (2006) Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. J Biol Chem 281: 7775-7783
15. Chimnaronk S, Gravers Jeppesen M, Suzuki T, Nyborg J, Watanabe K (2005) Dual-mode recognition of noncanonical tRNAs(Ser) by seryl-tRNA synthetase in mammalian mitochondria. The EMBO journal 24: 3369-3379
16. Chopra S, Palencia A, Virus C, Schulwitz S, Temple BR, Cusack S, Reader J (2016) Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent. Nature communications 7: 12928
17. Chopra S, Palencia A, Virus C, Tripathy A, Temple BR, Velazquez-Campoy A, Cusack S, Reader JS (2013) Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase. Nature communications 4: 1417
18. Cusack S, Yaremchuk A, Krikliviy I, Tukalo M (1998) tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase. Structure 6: 101-108
19. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347: 203-206
20. Esseiva AC, Naguleswaran A, Hemphill A, Schneider A (2004) Mitochondrial tRNA import in Toxoplasma gondii. The Journal of biological chemistry 279: 42363-42368
21. Fersht AR, Ashford JS, Bruton CJ, Jakes R, Koch GL, Hartley BS (1975) Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry 14: 1-4
22. Gu W, Hurto RL, Hopper AK, Grayhack EJ, Phizicky EM (2005) Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Molecular and cellular biology 25: 8191-8201
23. Hati S, Ziervogel B, Sternjohn J, Wong FC, Nagan MC, Rosen AE, Siliciano PG, Chihade JW, Musier-Forsyth K (2006) Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in "selective release" of noncognate amino acids. The Journal of biological chemistry 281: 27862-27872
24. Hawko SA, Francklyn CS (2001) Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element. Biochemistry 40: 1930-1936
25. Heinemann IU, Nakamura A, O'Donoghue P, Eiler D, Söll D (2012) tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res 40: 333-344
26. Horikoshi T, Noguchi H, Umehara T, Mutsuro-Aoki H, Kurihara R, Noguchi R, Hashimoto T, Watanabe Y, Ando T, Kamata K et al (2021) Crystal structure of Nanoarchaeum equitans tyrosyl-tRNA synthetase and its aminoacylation activity toward tRNA(Tyr) with an extra guanosine residue at the 5'-terminus. Biochem Biophys Res Commun 575: 90-95
27. Howard MJ, Liu X, Lim WH, Klemm BP, Fierke CA, Koutmos M, Engelke DR (2013) RNase P enzymes: divergent scaffolds for a conserved biological reaction. RNA Biol 10: 909-914
28. Hyouta Himeno TH, Takuya Ueda, Kimitsuna Watanabe, Kin-ichiro Miura, and Mikio Shimizu (1989) Role of the extra G-C pair at the end of the acceptor stem of tRNAHIs in aminoacylation. Nucleic Acid Research 17: 9
29. Ibba M, Soll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69: 617-650
30. Ivanesthi IR, Latifah E, Amrullah LF, Tseng YK, Chuang TH, Pan HC, Yang CS, Liu SY, Wang CC (2024) Adaptation of a eukaryote-like ProRS to a prokaryote-like tRNAPro. Nucleic acids research 52: 7158-7170
31. Ivanesthi IR, Latifah E, Liu SY, Tseng YK, Pan HC, Wang CC (2025) Dual-mode recognition of tRNA(Pro) isoacceptors by Toxoplasma gondii Prolyl-tRNA synthetase. EMBO reports 26: 2931-2944
32. Jain V, Kikuchi H, Oshima Y, Sharma A, Yogavel M (2014) Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase. Journal of structural and functional genomics 15: 181-190
33. Jain V, Yogavel M, Kikuchi H, Oshima Y, Hariguchi N, Matsumoto M, Goel P, Touquet B, Jumani RS, Tacchini-Cottier F et al (2017) Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis. Structure (London, England : 1993) 25: 1495-1505.e1496
34. Jain V, Yogavel M, Oshima Y, Kikuchi H, Touquet B, Hakimi MA, Sharma A (2015) Structure of Prolyl-tRNA Synthetase-Halofuginone Complex Provides Basis for Development of Drugs against Malaria and Toxoplasmosis. Structure 23: 819-829
35. Katsyv I, Wang M, Song WM, Zhou X, Zhao Y, Park S, Zhu J, Zhang B, Irie HY (2016) EPRS is a critical regulator of cell proliferation and estrogen signaling in ER + breast cancer. 7
36. Kim MH, Kang BS (2022) Structure and Dynamics of the Human Multi-tRNA Synthetase Complex. Sub-cellular biochemistry 99: 199-233
37. Kwon NH, Fox PL, Kim S (2019) Aminoacyl-tRNA synthetases as therapeutic targets. Nat Rev Drug Discov 18: 629-650
38. Latifah E, Ivanesthi IR, Tseng Y-K, Pan H-C, Wang C-C (2024) Adaptive evolution: Eukaryotic enzyme's specificity shift to a bacterial substrate. 33: e5028
39. Lee J, Joshi N, Pasini R, Dobson RC, Allison J, Leustek T (2016) Inhibition of Arabidopsis growth by the allelopathic compound azetidine-2-carboxylate is due to the low amino acid specificity of cytosolic prolyl-tRNA synthetase. The Plant journal : for cell and molecular biology 88: 236-246
40. Lee YH, Chang CP, Cheng YJ, Kuo YY, Lin YS, Wang CC (2017) Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell Mol Life Sci 74: 2663-2677
41. Lee YH, Lo YT, Chang CP, Yeh CS, Chang TH, Chen YW, Tseng YK, Wang CC (2019) Naturally occurring dual recognition of tRNA(His) substrates with and without a universal identity element. RNA Biol 16: 1275-1285
42. Liu H, Peterson R, Kessler J, Musier-Forsyth K (1995) Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro. Nucleic Acids Res 23: 165-169
43. Lorenz C, Lünse CE, Mörl M (2017) tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules 7
44. Manickam Y, Malhotra N, Mishra S, Babbar P, Dusane A, Laleu B, Bellini V, Hakimi MA, Bougdour A, Sharma A (2022) Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development. PLoS pathogens 18: e1010363
45. Michel Fromant PP, and Sylvain Blanquet (2000) Function of the Extra 5′-Phosphate Carried by Histidine tRNA. Biochemistry 39: 6
46. Musier-Forsyth AERaK (2004) Recognition of G-1:C73 Atomic Groups by Escherichia coli Histidyl-tRNA Synthetase. Biochemistry 126: 2
47. Nameki N, Tadaki T, Muto A, Himeno H (1999) Amino acid acceptor identity switch of Escherichia coli tmRNA from alanine to histidine in vitro. Journal of molecular biology 289: 1-7
48. Nasim F, Qureshi IA (2023) Aminoacyl tRNA Synthetases: Implications of Structural Biology in Drug Development against Trypanosomatid Parasites. ACS omega 8: 14884-14899
49. Natsoulis G, Hilger F, Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243
50. Nobukazu Nameki HA, Mikio Shimizu, Norihiro Okada and Hyouta Himeno (1995) Identity elements of Saccharomyces cerevisiae tRNA™8. Nucleic Acids Research 23: 6
51. Oslowski CM, Urano F (2011) Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol 490: 71-92
52. Pena N, Dranow DM, Hu Y, Escamilla Y, Bullard JM (2019) Characterization and structure determination of prolyl-tRNA synthetase from Pseudomonas aeruginosa and development as a screening platform. Protein Sci 28: 727-737
53. Pino P, Aeby E, Foth BJ, Sheiner L, Soldati T, Schneider A, Soldati-Favre D (2010) Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met formylation in Apicomplexa. Molecular microbiology 76: 706-718
54. Randau L, Schröder I, Söll D (2008) Life without RNase P. Nature 453: 120-123
55. Rubio M, Napolitano M, Ochoa de Alda JA, Santamaría-Gómez J, Patterson CJ, Foster AW, Bru-Martínez R, Robinson NJ, Luque I (2015) Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress. Nucleic acids research 43: 9905-9917
56. Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9: 283-300
57. Shiba K, Stello T, Motegi H, Noda T, Musier-Forsyth K, Schimmel P (1997) Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant. The Journal of biological chemistry 272: 22809-22816
58. Shimada N, Suzuki T, Watanabe K (2001) Dual mode recognition of two isoacceptor tRNAs by mammalian mitochondrial seryl-tRNA synthetase. The Journal of biological chemistry 276: 46770-46778
59. Song Y, Zhou H, Vo MN, Shi Y, Nawaz MH, Vargas-Rodriguez O, Diedrich JK, Yates JR, Kishi S, Musier-Forsyth K et al (2017) Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid. Nature communications 8: 2281
60. Stehlin C, Burke B, Yang F, Liu H, Shiba K, Musier-Forsyth K (1998) Species-specific differences in the operational RNA code for aminoacylation of tRNAPro. Biochemistry 37: 8605-8613
61. Steiner RE, Kyle AM, Ibba M (2019) Oxidation of phenylalanyl-tRNA synthetase positively regulates translational quality control. Proc Natl Acad Sci U S A 116: 10058-10063
62. SternJohn J, Hati S, Siliciano PG, Musier-Forsyth K (2007) Restoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain. Proceedings of the National Academy of Sciences of the United States of America 104: 2127-2132
63. Susan A. Connolly AER, Karin Musier-Forsyth, and Christopher S. Francklyn (2004) G-1:C73 Recognition by an Arginine Cluster in the Active Site of Escherichia coli Histidyl-tRNA Synthetase. Biochemistry 43: 8
64. Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279: 49656-49663
65. Tian Q, Wang C, Liu Y, Xie W (2015) Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase. Nucleic Acids Res 43: 2980-2990
66. Tye MA, Payne NC, Johansson C, Singh K, Santos SA, Fagbami L, Pant A, Sylvester K, Luth MR, Marques S et al (2022) Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat Commun 13: 4976
67. Vargas-Rodriguez O, Musier-Forsyth K (2013) Exclusive use of trans-editing domains prevents proline mistranslation. The Journal of biological chemistry 288: 14391-14399
68. Wen Yan JA, and Christopher Francklyn (1996) A tRNA Identity Switch Mediated by the Binding Interaction between a tRNA Anticodon and the Accessory Domain of a Class II Aminoacyl-tRNA Synthetas. Biochemistry 35: 10
69. Yaremchuk A, Cusack S, Tukalo M (2000) Crystal structure of a eukaryote/archaeon-like protyl-tRNA synthetase and its complex with tRNAPro(CGG). The EMBO journal 19: 4745-4758
70. Yogavel M, Bougdour A, Mishra S, Malhotra N, Chhibber-Goel J, Bellini V, Harlos K, Laleu B, Hakimi MA, Sharma A (2023) Targeting prolyl-tRNA synthetase via a series of ATP-mimetics to accelerate drug discovery against toxoplasmosis. PLoS pathogens 19: e1011124
71. Zanki V, Bozic B, Mocibob M, Ban N, Gruic-Sovulj I (2022) A pair of isoleucyl-tRNA synthetases in Bacilli fulfills complementary roles to keep fast translation and provide antibiotic resistance. Protein Sci 31: e4418