| 研究生: |
黃于洲 Yu-Chou Huang |
|---|---|
| 論文名稱: |
微米光柵壓印有機太陽能電池主動層之研究 Study of Imprinted Micro-Grating Active Layer in Organic Photovoltaic |
| 指導教授: |
張瑞芬
Jui-Fen Chang 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 奈米壓印 、熱壓印 、有機太陽能電池 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,許多團隊在有機太陽能電池的效率增進貢獻良多,從單層有機太陽能電池到奈米壓印有機太陽能電池的研究,無論是在有機材料的吸光特性或是電荷收集上都有相當的進展,盼望早日能夠生產出商用的電池。
本研究重點在於吾人以熱壓印製作微米週期結構有機太陽能電池主動層,期望光入射至主動層和鋁電極界面時能在微米光柵結構內多次反射與吸收,增強主動層的吸收率,亦能使主動層和鋁電極間的接觸面積增加,使有效收集到的載子更多。同時以時域有限差分法模擬與光譜儀量測一同驗證此電池結構吸收率的增進,進一步縮小至奈米結構模擬之,並在AM 1.5G的光源下進行效率量測,分析I-V曲線得到電性參數,在施加相同壓力之下,光柵深度10 nm的有機太陽能電池短路電流較平面壓印有機太陽能電池相對提升0.05 mA(6.6 %),光柵深度30 nm的有機太陽能電池短路電流較平面壓印有機太陽能電池相對提升0.118 mA(20 %),意即光柵結構所貢獻的抗反射效果使微米週期光柵有機太陽能電池較平面壓印有機太陽能電池有更高的光電流輸出。
In recent years, the efficiency of organic photovoltaic has increasing dramatically through numerous researchers’ contribution. From single layer organic photovoltaic to tandem organic photovoltaic, both the absorbance of photon and charge collection is increasing gradually. We are looking forward to producing commercial batteries.
This thesis focuses on enhancement of electron collection efficiency and photon absorbance in organic photovoltaic through thermal imprint lithography on active layer. The enhancement of photon absorbance is proved with spectrophotometer in this photovoltaic, and collaborated with the FDTD simulation. Finally, we perform optical simulation on varying the structure period from micrometer to nanometer scale. The photocurrent of device is measured under standard AM 1.5G solar spectrum for analyzing electrical property by I-V curve. Basing on the same imprint pressure, the short circuit current of depth of 10 nm grating active layer in OPV is 0.05 mA(relative improvement 6.6%) higher than planar one. The same phenomena can be found under higher imprinted pressure that the short circuit current of depth of 30 nm grating active layer in OPV is 0.118 mA (relative improvement 20%)higher than planar one. Therefore, the contribution of anti-reflection caused from imprinted micro-grating structure in OPV can enhance photocurrent more than planar one.
[1] NATIONS, UNITED. KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE. 1998; Available from: http://unfccc.int/resource/docs/convkp/kpeng.pdf.
[2] 林明獻, 太陽能電池技術入門 2007: 全華圖書股份有限公司.
[3] Agua Caliente Solar Project. Available from: http://www.firstsolar.com/en/Projects/Agua-Caliente-Solar-Project.
[4] Arons, A. B., & Peppard, M. B. , Einstein's Proposal of the Photon Concept—a Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 1965. 33(5): p. 367-374.
[5] 蔡進譯, 超高效率太陽電池─從愛因斯坦的光電效應談起. 物理雙月刊, 2005. 27: p. 701-719.
[6] 太陽能電池. Available from: http://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0.
[7] Lyu, Hong-Kun, Sim, J. H., Woo, Sung-Ho, Kim, K. P., Shin, Jang-Kyoo,& Han Y. S. , Efficiency enhancement in large-area organic photovoltaic module using theoretical power loss model. Solar Energy Materials and Solar Cells, 2011. 95(8): p. 2380-2383.
[8] Jung, J., Kim, D., Lim, J., Lee, C.,& Yoon, S. C., Highly Efficient Inkjet-Printed Organic Photovoltaic Cells. Jpn. J. Appl. Phys., 2010. 49.
[9] Hou, J., Chen, Hsiang-Yu, Zhang, S., Chen, R. I., Yang, Y., Wu, Y.,& Li G. , Synthesis of a Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. J. Am. Chem. Soc, 2009. 131(43).
[10] Yang, Y., Mielczarek, K., Aryal, M., Zakhidov, A.,& Hu, W., Nanoimprinted Polymer Solar Cell. ACS Nano, 2012. 6(4): p. 2877-2892.
[11] Kim, J. Y., Kim, S. H., Lee, Hyun-Ho, Lee, K., Ma, W., Gong, X.,& Heeger, A. J. , New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials, 2006. 18(5): p. 572-576.
[12] Chou, S. Y., Krauss, P. R.,& Renstrom, P. J. , Nanoimprint Lithography. J. Vac. Sci. Technol. B, 1996. 14(6): p. 4129-4133.
[13] Bender, M., Otto, M., Hadam, B., Vratzov, B., Spangenberg, B.,& Kurz, H. , Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering, 2000. 53: p. 233-236.
[14] Voicu, N. E., Ludwigs, S., Crossland, E. J. W., Andrew, P.,& Steiner, U. , Solvent-Vapor-Assisted Imprint Lithography. Advanced Materials, 2007. 19(5): p. 757-761.
[15] Brabec, C. J., Sariciftci, N. S.,& Hummelen, J. C. , Plastic Solar Cells. Adv. Funct. Mater., 2001. 11(1): p. 15-26.
[16] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K.,& Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(11): p. 864-868.
[17] He, X., Gao, F., Tu, G., Hasko, D., Huttner, S., Steiner, U., Greenham, N. C., Friend, R. H.,& Huck, W. T. S. , Formation of nanopatterned polymer blends in photovoltaic devices. Nano Lett, 2010. 10(4): p. 1302-1307.
[18] Park, J. Y., Hendricks, N. R.,& Carter, K. R. , Solvent-assisted soft nanoimprint lithography for structured bilayer heterojunction organic solar cells. Langmuir, 2011. 27(17): p. 11252-11258.
[19] 吳定中、韓闕, 微電子電路. 2 ed, 2005: 高點文化.
[20] 許凱翔, 以DSP實現太陽能電池最大功率追蹤控制, 2012, 國立中央大學 機械工程學系. p. 12-15.
[21] 許捷翔, 利用陽極氧化鋁薄膜在矽太陽能電池表面製做抗反射奈米結構, 2012, 國立中央大學 光電科學與工程學系. p. 52.
[22] Yee, K. S. , Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. Antennas and Propagation, IEEE Transactions on, 1966. 14(3).
[23] FDTD電場磁場配置圖. Available from: http://wenku.baidu.com/view/bb89f4936bec0975f465e2d7.html.
[24] Koo, N., Bender, M., Plachetka U., Fuchs, A., Wahlbrink, T., Bolten, J.,& Kurz H., Improved mold fabrication for the definition of high quality nanopatterns by Soft UV-Nanoimprint lithography using diluted PDMS material. Microelectronic Engineering, 2007. 84(5-8): p. 904-908.
[25] Zhou, W., Zhang, J., Liu, Y., Li, X., Niu, X., Song, Z., Min, G., Wan, Y., Shi, L.,& Feng, S., Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography. Applied Surface Science, 2008. 255(5): p. 2885-2889.
[26] Keller, F., Hunter, M. S.,& Robinson, D. L., Structural Features of Oxide Coatings on Aluminum. The Electrochemical Society, 1953. 100(9): p. 411-419.
[27] Thompson, G.E., Porous anodic alumina: fabraication, characterization and applications. Thin Solid Films, 1997. 297: p. 192-201.
[28] Zhao, Nai-Qin, Jiang, Xiao-Xue, Shi, Chun-Sheng, Li, Jia-Jun, Zhao, Zhi-Guo, Du, Xi-Wen, Effects of anodizing conditions on anodic alumina structure. Journal of Materials Science, 2007. 42(11): p. 3878-3882.
[29] Wiedemann, W., Sims, L., Abdellah, A., Exner, A., Meier, R. et al., Nanostructured interfaces in polymer solar cells. Applied Physics Letters, 2010. 96(26): p. 263109.
[30] Allen, J. E., Yager, K. G., Hlaing, H., Nam, Chang-Yong, Ocko, B. M., Black, C. T., Enhanced charge collection in confined bulk heterojunction organic solar cells. Applied Physics Letters, 2011. 99(16): p. 163301.
[31] Ko, Doo-Hyun, Tumbleston, J. R., Schenck, W., Lopez, R.,& Samulski, E. T. , Photonic Crystal Geometry for Organic Polymer:Fullerene Standard and Inverted Solar Cells. The Journal of Physical Chemistry C, 2011. 115(10): p. 4247-4254.
[32] Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T. Q., Dante, M.,& Heeger, A. J. , Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007. 317(5835): p. 222-225.