跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪智育
Chih-Yu Hung
論文名稱: 微電化學深孔加工之研究與分析
指導教授: 洪勵吾
Lih-Wu Hourng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 73
中文關鍵詞: 深寬比微電化學加工
外文關鍵詞: depth-width ratio, Electrochemical micro-machining
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    在眾多非傳統特殊微加工中,微電化學(Electrochemical Micro-Machining,簡稱EMM)擁有加工速度快、無表面應力集中及表面粗糙度佳的優勢,具有相當的發展潛力和高附加價值。
    本研究採用300μm之中空銅管作為刀具,電解液流動採內部流,希望藉由脈衝式直流電源,提供有規律的間歇供電進行間歇加工,配合橫向水流,以改善成品精度以及增加深寬比。本文採用單一因子法探討微電化學加工相關參數(操作電壓、加工能率、脈衝週期、電解液濃度、進給速率)對加工孔徑的影響程度。
    本文最後以最佳參數進行5600μm之深孔加工,得到加工孔徑約900μm,深寬比約為6.2。


    Abstract
    In numerous non-traditional, micro-machining, the electrochemical micro-machining ( abbreviated as EMM ) has the advantage of quick processing speed, good convergence in surface stress , and nice smoothness in workpiece surface with enormous potentialities and highly added value.
    A copper tube with 300 - micron meter of diameter is selected as electrode tool. The inner flowing vein, pulse power supply which supplies a regular intermittent power to machine the product intermittently, and with the water flowing sidelong are employed for improving the precision of products and increasing the depth –width ratio. In this research, Single Variable Method is used to analyze the influence level on the hole diameter of workpiece by relevant parameters ( such as voltage, duty, pulse period, density of the electrolyte, and feed rate).
    Finally, we take the best parameters to machine the depth of 5600 micron - meter then we obtain about 900 micron - meter of hole diameter
    and 6.2 depth-width ratio.

    目錄 摘要 …………………………………………………………………… I 目錄 ………………………………………………………………… III 表目錄 ……………………………………………………………… VII 圖目錄 ………………………………………………………………VIII 符號說明 ……………………………………………………………… X 第一章 緒論 ……………………………………………………………1 1-1 前言 …………………………………………………………… 1 1-2 文獻回顧 ……………………………………………………… 3 1-2-1 數值模擬方面 …………………………………………… 3 1-2-2 實驗結果方面 …………………………………………… 5 1-3 研究目的 ……………………………………………………… 9 第二章 理論基礎 …………………………………………………… 10 2-1 電化學加工之基本理論 ………………………………………10 2-1-1 電流效率 …………………………………………………11 2-1-2 過電壓 ……………………………………………………11 2-1-3 電化學反應式 ……………………………………………12 2-1-4 歐姆定律 …………………………………………………13 2-2 空隙分數、導電度、導電度與濃度之關係、電流密度…… 14 2-2-1 空隙分數 …………………………………………………14 2-2-2 導電度 ……………………………………………………14 2-2-3 導電度與濃度關係 ………………………………………15 2-2-4 電流密度 …………………………………………………16 2-3 電解間隙 ………………………………………………………16 2-3-1 靜止電極刀具之間隙 ……………………………………16 2-3-2 進給電極刀具之間隙 ……………………………………17 2-4 柏努力定律 ……………………………………………………18 2-5 電雙層的現象 …………………………………………………19 2-5-1 電解 …………………………………………………… 19 2-5-2 電雙層 ………………………………………………… 19 2-5-3 時間常數 ……………………………………………… 20 第三章 實驗裝置與步驟 …………………………………………… 21 3-1 實驗設備 ………………………………………………………21 3-1-1 機台結構設計 ……………………………………………21 3-1-2 刀具近給系統 ……………………………………………22 3-1-3 脈衝式直流電源供應系統 ………………………………23 3-1-4 高壓鋼瓶 …………………………………………………23 3-1-5 沉水馬達 …………………………………………………24 3-1-6 浮子流量計 ………………………………………………24 3-2 實驗材料 ………………………………………………………24 3-2-1 陰極刀具 …………………………………………………24 3-2-2 陽極試片 …………………………………………………24 3-2-3 硝酸鈉粉末 ………………………………………………25 3-3 實驗步驟及注意事項 …………………………………………25 3-3-1實驗步驟 ………………………………………………… 26 3-3-2 注意事項 …………………………………………………27 第四章 結果與討論 ………………………………………………… 29 4-1 操作電壓之參數分析 …………………………………………29 4-2 加工能率之參數分析 …………………………………………31 4-3 電解液濃度之參數分析 ………………………………………32 4-4 脈衝週期之參數分析 …………………………………………33 4-5 進給速率之參數分析 …………………………………………34 4-6 側邊絕緣 ………………………………………………………35 4-7 實驗加工發展現況 ……………………………………………36 第五章 結論 ………………………………………………………… 37 5-1 結論 ……………………………………………………………37 5-2 未來展望 ………………………………………………………38 參考文獻 ………………………………………………………………40 表 ………………………………………………………………………49 圖 ………………………………………………………………………54 附錄A ………………………………………………………………… 73

    參 考 文 獻
    1. B. Bhattacharyya , B. Doloi and P. S. Sridhar, “Electrochemical Micro- machining: New Possibilities: for Micro-manufacturing,” Journal of Materials Processing Technology Vol. 113, pp. 301-305 (2001).
    2. 木本康雄著,賴耿陽譯著,“精密加工之電學應用”,復漢
    出版社 pp. 93-123 (1982).
    3. 佐藤敏一著,賴耿陽譯著,“金屬腐蝕加工技術”,復漢出
    版社 pp.10-48 (1986).
    4. 朱樹敏,“電化學加工(ECM)及相關特種加工工藝技術,電
    化學加工(ECM)及相關特種加工工藝技術研討會”,台大慶
    齡工業研究中心 (1997).
    5. M. Purcar,L. Bortels,B. V. d. Bossche, and J. Deconinck , “3D
    Electrochemical Machining Computer Simulations ,” Journal of
    Materials Processing Technology Vol. 149, pp.72-478 (2004).
    6. M. Purcar, L. Bortels,B. V. d. Bossche, and J. Deconinck, “A User-friendly Simulation Software Tool for 3D ECM ,” Journal of Materials Processing Technology Vol. 149, pp.486-492 (2004).
    7. J. F. Thorpe and R. D. Zerkle, “Theoretical Analysis of the
    Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by
    Electrochemical Machining,” C.L. Faust, editor, Fundamentals of
    Electrochemical Machining, Electrochemical Society Princeton,
    pp.1-39 (1971).
    8.D. E. Collete, R. C. Hewson-Browne and D. W. Windle, “A
    Complex Variable Approach to Electrochemical Machining
    Problems,” Journal of Engineer Machine Vol. 4, pp. 29-37 (1970).
    9. R. Hunt, “The Numerical Solution of Elliptic Free Boundary
    Problems Using Multi-grid Techniques,” Comp Physics Vol. 65, pp. 448-461 (1986).
    10. R. Hunt, “An Embedding Method for the Numerical Solution of
    the Cathode Design Problem in Electrochemical Machining,” International Journal for Numerical Methods in Engineering
    Vol. 29, pp. 1177-1192 (1990).
    11. 蔡和蒼,“反求法在電化學加工刀具設計上之應用”,國立中
    央大學機械研究所碩士論文 (1995).
    12. H. Tipton, “Dynamics of Electrochemical Machining Process ”, 5th
    Interior Conference Machine Tool Research Birmingham, England, pp. 509-522, (1964).
    13. K. Kawafune, T. Mikoshiba, K. Noto and K. Hirata, “Accuracy in
    Cavity Sinking by ECM,” Annals of CIRP Vol. 15 , pp.
    65/1-65/13 (1967).
    14. J. F. Thorpe and R. D. Zerkle, “An Analytical Basis for
    Investigation the Dynamics of Electrochemical Machining,”
    Report UCME-318-1 , Mechanical Engineering Department
    University of Cincinnati, Ohio, December (1967).
    15. J. F. Thorpe, “On the Kinematics of Electrochemical Machining,”
    ASME Winter Annual Meeting New York, Dec. (1968).
    16.J. F. Thorpe and R. D. Zerkle, “Analytic Determination of the
    Equilibrium Electrode Gap in Electrochemical Machining,” Interior Journal Machine Tool Design And Research Vol. 9, pp. 131-144 (1969).
    17. 陳志誠,“電化學加工刀具之設計”,國立中央大學機械研
    究所碩士論文 (1987).
    18. V. K. Jain, P. G. Yogindra and S. Murugan, “Prediction of Anode
    Profile in ECBD and ECD Operations,” Interior Journal Machine Tools Manufacture Vol. 27, 1, pp. 113-114 (1987).
    19. 陳川吉,“電化學加工過程熱流現象之分析”,國立中央大
    學機械研究所碩士論文 (1990).
    20. 張啟生,“二維熱流效應對電化學加工反求工具形狀之分析”
    ,國立中央大學機械工程研究所博士論文 (1991).
    21. L. W. Hourng and C. S. Chang, “Numerical Calculation of
    Electrochemical Drilling,” Journal of Applied Electrochemistry
    Vol. 23, pp. 316-321 (1993).
    22. 鍾兆才,“熱流場參數對電化學加工工件外形預估與工具電
    極設計影響之探討”,國立中央大學機械研究所碩士論文
    (1996).
    23. J. Hopenfeld and R. R. Cole, “Electrochemical Machining –
    Prediction and Correlation of Process Variables,” Journal of
    Engineering for Industry pp.455-461, (1966).
    24. V. Chetty and V. Radhakrishnan, “Electrolyte Velocity
    Measurement Using LDV in An Experimental Electrochemical Machining Setup,” Interior Journal Machine Tool Design and Research Vol. 19, pp. 157-163 (1979).
    25. C. Y. Yu, Z. Y. Hou, X. K. Yao and Y. S. Yang, “The
    Experimental Investigations on Gas Bubble Distribution in
    Electrochemical Machining Gap,” Proceed of the Interior
    Symposium on Electro-machining pp. 393-403(1983).
    26. V. Lescuras, I. Zouari, F. Valentin and F. Lapicque, “A Photo
    Physical Technique for The Measurement Of Local Oxygen
    Concentration near An Electrode Surface,” Journal of Applied
    Electrochemistry Vol. 24, pp. 652-657 (1994).
    27. 鍾俊傑,“電化學加工中氣泡形程與發展之實驗分析”,國立
    中央大學機械研究所碩士論文 (1997).
    28. 諶芝侖,“電化學加工過程中氣泡之觀測與分析”, 國立中
    央大學機械研究所碩士論文 (1998).
    29. Y. Li, Y. Zheng, G. Yang and L. Q. Peng , “Localized
    Electrochemical Micromachining with Gap Control,” Sensors and Actuators A 108, pp. 144-148 (2003).
    30. B. Bhattacharyya & J. Munda, “Experimental Investigation on the
    Influent of Electrochemical Machining Parameters on Machining
    Rate and Accuracy in Micromachining Domain,” International
    Journal of Machine Tool&Manufacture Vol.43, pp. 1301-1310
    (2003).
    31. H. Hocheng,Y. H. Sun, S. C. Lin and P.S. Kao, “A Material
    Removal Analysis of Electrochemical Machining Using Flat-End
    Cathode,” Journal of Material Processing Technology Vol. 140,
    pp. 264-268 (2003).
    32. I. M. Crichton and J. A. Mcgeough, “Studies of the Discharge
    Mechanical in Electrochemical Arc Machining,” Journal of
    Applied Electrochemistry Vol. 15, pp. 113-119, (1985).
    33. Y. Chengye and Z. X. Liu , “Pulse Electrochemical Machining,”
    Journal of Nanjing Aeronautical Institute pp. 74-99, (1998).
    34. Hiroaki Suzuki, “Micro-fabrication of Chemical Sensors and
    Biosensors for Environmental Monitoring,” Materials Science and
    Engineering C Vol. 12, pp. 55-61 (2000).
    35. V. Kirchner & P. Allongue, “Electrochemical Micro-Machining,” Accounts of Chemical Research Vol. 34, No.5, pp. 371-377 (2001).
    36. M. Kock, V. Kirchner, R. Schuster, “ Electrochemical
    Micromachining with Ultrashort Voltage Pulses-a Versatile
    Method with Lithographical Precision,” Electrochemical Action Vol. 48,pp. 3213-3219 (2003).
    37. P. Novak and I. Rousar , “ Inter-granular Corrosion in
    Electrochemical Machining ,” Materials Chemistry and Physics
    Vol. 10 , pp. 155-161 (1984).
    38. C. Gabrielli , F. Huet , R. Wiart and J. Zoppas-Ferrira , “Dynamic
    Behavior of an Electrolyze with a Two Phase Solid-liquid
    Electrolyte, Part 1: Spectral Analysis of Potential Fluctuations,”
    Journal of Applied Electrochemistry Vol. 24, pp. 1228-1234(1994).
    39. A. H. Meleka and D. A. Glew, “ Electrochemical Machining,”
    International Metals Reviews pp. 229-252 (1977).
    40. O.V. Krishnaiah Chetty and V. Radhakrishnan, “Surface Studies
    in ECM Using an Relocation Machining Fixture,” International
    Journal of Machine Tool Design and Research Vol. 18, pp. 1-8
    (1978).
    41. V. K. Jain, V. K. Jain and P. C. Pandey, “Corner Reproduction Accuracy in Electro-Chemical Drilling (ECD) of Blind Holes,” Journal of Engineering for Industry Vol. 106, pp. 55-62 (1984).
    42. F. Zawistowski, “New System of Electrochemical Form
    Machining Using Universal Rotation Tools,” Interior Journal Machine Tools Manufacture Vol. 30, No.3, pp. 475-483 (1990).
    43. 楊昌融,“微電化學加工參數之最佳化設計及評估”,國立中央大學機械研究所碩士班論文 (2004).
    44. 廖哲範,“脈衝微電化學之加工應用與評估”,國立中央大學機
    械研究所碩士論文 (2005).
    45. J. F. Thorpe and R. D. Zerkle, “Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining,” Electrochemical Society Princeton pp. 1-39 (1971).
    46. 田福助,“電化學基本原理與應用”,五洲出版社pp. 39-42 (2004).
    47. B. Bhattacharyya , J. Munda, “Experimental investigation into electrochemical micromachining(EMM)process,” Journal of Materials Processing Technology Vol. 140 pp. 287-291 (2003).
    48. Y. F. Lou, “Differential Equations for The Ultra-fast Transient Migration in Electrolytic Dissolution,” Journal of Electrochemistry Communication Vol. 8 pp.353-358 (2006).
    49. B. Bhattacharyya , J. Munda, M. Malapati, “Advancement in electrochemical micro-machining,” International Journal of Machine & Manufacture Vol. 44 pp. 1577-1589 (2004).
    50. D. S. Bilgi , V.K. Jain , R. Shekhar , S. Mehrotra, “Electrochemical deep hole drilling in super alloy for turbine application,” Journal of Materials Processing Technology Vol. 149 pp. 445–452(2004).
    51. M.S. Hewidy, “Controlling of metal removal thickness in ECM process,” Journal of Materials Processing Technology Vol. 160 pp. 348–353 (2005).
    52. J. A Kenny and G. S Hwang, “Electrochemical machining with ultra-short voltage pluses: Modeling of Charging Dynamics and Feature Profile Evolution,” Institute of Physical Publishing Nanotechnology Vol. 16 S309-S313 (2005).
    53. H. Hocheng, P.S Kao, S.C. Lin, “Development of the opening during electrochemical boring of hole,” Interior Journal Advantage Manufacture Technology Vol. 25 pp. 1105-1112 (2005).

    QR CODE
    :::