跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪嘉澤
論文名稱: 波長調制外差駐波干涉儀應用於位移量測
The wavelength-modulated heterodyne standing-wave interfrometer apply in displacement measurement
指導教授: 李朱育
Ju-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 90
中文關鍵詞: 位移量測駐波干涉奈米球散射板雷射二極體波長調制外差干涉術
外文關鍵詞: Displacement measurement, Standing wave interference, Nanosphere scattering plate, Laser diode, Wavelength modulation heterodyne interferometry
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種新式的干涉儀「波長調制外差駐波干涉儀」。此新式干涉儀整合了光學干涉系統、波長調制技術、駐波干涉術,其應用於位移量測精度可達奈米等級。 本研究利用雷射二極體波長可調制的特性,搭配刻意刻設計的光程差,產生外差光源。外差光源搭配駐波干涉儀的優點為單束光路,再結合一片奈米球散射板,可將駐波干涉光場散射出來。透過本研究提出的相位演算法,可巧妙的擷取出相位正交的兩道訊號,經過解析相位即可換算出位移量。 我們設計了以單光束構建而成的波長調制外差駐波干涉儀,其相較於傳統商用干涉儀,可減少硬體架構空間,透過波長調制的方式調制出外差光源使量測系統達到高精度、高靈敏度以及抵抗外在干擾的效果,搭配上相位演算法,其量測效果媲美目前市面上昂貴的精密量測設備。 根據理論推倒與實驗結果顯示,本系統量測解析度可達2.5 nm,量測靈敏度為1.38 nm/°,量測速度極限可達3.3 μm/s。


    In this study, a new type of optical interferometer is proposed to be” Wavelength modulation heterodyne standing wave interferometer.” The new interferometer integrates optical interference system, wavelength modulation technique, and standing wave interferometry. Since it applying on displacement measurement, its accuracy could reach to nanometer level.
    We utilize the characteristic of the laser diode-wavelength modulability and the special optical path deference designed to produce the heterodyne light source. By Combining the advantage of the standing wave interferometer- single beam path and mixing the nanosphere scattering plate, we scatter the standing wave interference light field. By means of the phase detecting algorithm proposed in this study, the two quadratic signals could be detected ingeniously. Also, we could obtain the displacement by analyzing the phase variation of the signals.
    Wavelength modulation heterodyne standing wave interferometer designed by us is constructed with the single beam path. Comparing with the traditional commercial interferometer, it can reduce the hardware architecture space. The heterodyne light source we used by wavelength modulation technique makes the measurement system achieve high precision, high sensitivity and resistance against external interference. With the phase algorithm, the measuring function is comparable to the expensive precision measuring equipment which are currently available on the market.
    According to the theoretical derivation and the experimental results, the measurement resolution is about 2.5 nm, the measurement sensitivity is 1.38 , and the limitation of measurement speed is about 3.3 m/s.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1研究背景 1 1-2文獻回顧 2 1-2-1位移干涉儀文獻回顧 2 1-2-2 駐波干涉儀文獻回顧 5 1-2-3 波長調制外差干涉術文獻回顧 8 1-3 研究目的 10 1-4 論文架構 11 第二章 基礎理論 12 2-1 干涉術 12 2-1-1 一般干涉術 12 2-1-2 外差干涉術 13 2-2 波長調制外差干涉術 18 2-2-1 雷射二極體 18 2-2-2 波長調制外差干涉術 21 2-3 駐波干涉原理 24 2-4 奈米球散射板駐波光場觀察 25 2-5 小結 26 第三章 系統架構 27 3-1 波長調制外差駐波干涉儀架構 27 3-2 奈米球散射板介紹 29 3-3 波長調制外差駐波干涉儀系統運作 30 3-4 訊號解調系統 33 3-4-1 正交訊號擷取技術 34 3-4-2 相位解析技術 40 3-5 小結 43 第四章 實驗結果與討論 44 4-1 重複性實驗 44 4-1-1 大位移行程 45 4-1-2 小位移行程 48 4-2 實驗討論 52 4-2-1 重複性 52 4-2-2 解析度 53 4-2-3 靈敏度 54 4-2-4 量測速度極限 55 4-2-5 量測範圍極限 57 4-3 小結 57 第五章 誤差分析 58 5-1 系統誤差 58 5-1-1 餘弦誤差 59 5-1-2 波長變化引入的量測誤差 60 5-1-3 訊號非正交引入之週期性非線性誤差 60 5-1-4 光程差變化引入之非線性誤差 64 5-1-5 殘餘直流項與不相等交流項引起之非線性誤差 65 5-2 隨機誤差 66 5-2-1 環境振動 66 5-2-2 光學元件之熱膨脹 66 5-2-3 電子雜訊 67 5-3 小結 68 第六章 結論與未來展望 69 6-1 結論 69 6-2 未來展望 69 參考文獻 71

    [1].科技橘報,全球首座 5奈米晶圓廠完工!台積電:正式進入試
    產階段。檢自
    https://buzzorange.com/techorange/2019/04/10/tsmc-5-nm/ (2019/04/10).
    [2].M. Born, and E. Wolf. “Principles of Optics:
    Electromagnetic Theory of Propagation, Interference
    and Diffraction of Light (7th Edition),” Cambridge
    University Press. (1999).
    [3].S. Hosoe, “Laser interferometric system for
    displacement measurement with high precision,”
    Nanotechnology 2(2), 88-95 (1991).
    [4].Y. Jourlin, J. Jay, and O. Parriaux, “Compact
    diffractive interferometric displacement sensor in
    reflection,” Precision Eng. 26(1), 1-6 (2002).
    [5].T. Kubota, M. Nara, and T. Yoshino, “Interferometer
    for measuring displacement and distance,” Opt. Lett.
    12(5), 310-312 (1987).
    [6].S.Yan, G. Wang, C. Lin, and Y. Luo, “Displacement
    measurement by single grating heterodyne
    Interferometry,” Conference on Lasers and Electro-
    Optics Pacific Rim (2015).
    [7].H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, and M.
    Haruna, “Low-coherence interferometer system for the
    simultaneous measurement of refractive index and
    thickness,” Appl. Opt. 41(7), 1315-1322 (2002).
    [8].S. De. Nicola, P. Ferraro, A. Finizo, G. Pesce, and
    G. Pierattini, “Reflective grating interferometer for
    measuring the refractive index of transparent
    materials,” Opt. Commun. 118(5), 491-494 (1995).
    [9].M. H. Chiu, J. Y. Lee, and D. C. Su, “Refractive-
    index measurement based on the effects of total
    internal reflection and the uses of heterodyne
    interferometry,” Appl. Opt. 36(13), 2936-2939 (1997).
    [10].O. Sasaki, and H. Okazaki, “Sinusoidal phase
    modulating interferometry for surface profile
    measurement,” Appl. Opt. 25(18), 3137-3140 (1986).
    [11].T. Suzuki, O. Sasaki, and T. Maruyama, “Phase locked
    laser diode interferometry for surface profile
    measurement,” Appl. Opt. 28(20), 4407-4410 (1989).
    [12].P. J. Caber, “Interferometric profiler for rough
    surface,” Appl. Opt. 32(19) 3438-3441 (1993).
    [13].A. A. Hadi. “Measurement of Air Temperature using
    Laser Interferometry,” Appl. Sci. 11(8), 1431-1435
    (2011).
    [14].M. Thakur, A. L. Vyas, and C. Shakher, “Measurement
    of temperature profile of a gaseous flame with a Lau
    phase interferometer that has circular gratings,”
    Appl. Opt. 41, 654-657 (2002).
    [15].D. Xie, C. Xu, and A. M. Wang, “Michelson
    interferometer for measuring temperature,” Phys.
    Lett. A. 36(25), 3038-3042 (2017).
    [16].J. Guo, Z. Zhu, and W. Deng, “Small-angle
    measurement based on surface-plasmon resonance and
    the use of magneto-optical modulation,” Appl. Opt.
    38(31), 6550-6555 (1999).
    [17].J. Jin, L. Zhao, and S. Xu, “High-precision rotation
    angle measurement method based on monocular vision,”
    Opt. Soc. 31(7), 1401-1407 (2014).
    [18].S. T. Lin, K.T. Lin, and W. J. Syu, “Angular
    interferometer using calcite prism and rotating
    analyzer,” Opt. Common. 277(2), 251-255 (2007).
    [19].M. Lkram, and G. Hussian, “Michelson interferometer
    for precision angle measurement,” Appl. Opt. 38(1),
    113-120 (1999).
    [20].P. Shi, and E. Stijns, “New optical method for
    measuring small-angle rotations,” Appl. Opt. 27(20),
    4342-4344 (1988).
    [21].A. Khaled, B. David, L. Francis, G. Munther, and B.
    Frederic. “Automatic Absolute Distance Measurement
    with One Micrometer Uncertainty Using a Michelson
    Interferometer,” WCE. 2, 6-8 (2011).
    [22].H. Kikuta, K. Iwata, and R. Nagata, “Absolute
    distance measurement by wavelength shift
    interferometry with a laser diode: Some systematic
    error sources,” Appl. Opt. 26(9) (1987).
    [23].U. Schnell, R. Dändliker, and S. Gray, “Dispersive
    white-light interferometry for absolute distance
    measurement with dielectric multilayer systems on
    the target,” Opt. Lett. 21(7), 528-530 (1996).
    [24].S. F. Wang, M. H. Chiu, W. W. Chen, F. H. Kao, and
    R. S. Chang, “Small-displacement sensing system
    based on multiple total internal reflections in
    heterodyne interferometry,” Appl. Opt. 48(13), 2566-
    2573 (2009).
    [25].H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R.
    Deturche, and G. Lerondel, “Quasi-common-optical-
    path heterodyne grating interferometer for
    displacement measurement,” J. Meas. Sci. Technol,
    21(11), 1-9 (2011).
    [26].J. Y. Lin, K. H. Chen, and J. H. Chen, “Measurement
    of small displacement based on surface plasmon
    resonance heterodyne interferometry,” Opt. Lasers
    Eng. 49(7), 811-815 (2011).
    [27].L. H. Shyu, Y. C. Wang, C.P. Chang, P. C. Tung, and
    E. Manske, “Investigation on displacement
    measurements in the large measuring range by
    utilizing multibeam interference,” Sens. Lett.
    10(5), 1109-1112 (2012).
    [28].H. Stiebig, H. Büchner, E. Bunte, V. Mandryka, D.
    Knipp, and G. Jäger, “Standing-wave interferometer,”
    Appl. Phys. Lett. 83(1), 12-14 (2003).
    [29].V. Jovanov, J. Ivanchev, and D. Knipp, “Standing
    wave Spectrometer,” Opt. Express 18(2), 426-438 (
    2010).
    [30].J. Y. Lee, Y. X. Wang, Z. Y. Lin, C. R. Lin, and C.
    H. Chan, “Standing-wave interferometer based on
    single-layer SiO2 nano-sphere scattering,” Opt.
    Express. 25(22), 26628-26637 (2017).
    [31].J. Y. Lee, and Y. X. Wang, “Polarization-standing-
    wave interferometer for displacement measurement,”
    Opt. Laser Technol. 111, 110-114 (2019).
    [32].J. Y. Lee, K. Y. Lin, and S. H. Huang, “Wavelength-
    modulated heterodyne speckle interferometry for
    displacement measurement,” SPIE. 7389, (2009).
    [33].J. Y. Lee, and G. A. Jiang, “Displacement
    measurement using a wavelength-phase-shifting
    grating interferometer,” Opt. Express, 21(21),
    25553-25564 (2013).
    [34].D. C. Su, M. H. Chiu, and C. D Chen, “A heterodyne
    interferometer using an electro-optic modulator for
    measuring small displacements,” J. Opt. 27, 19-23
    (1996).
    [35].A. Yariv, and P. Yeh, “Optical Waves in Crystals,”
    John Wiley & Sons. (1984).
    [36].S. O. Kasap, “Optoelectronics and photonics:
    Principle & Practice (2nd Edition),” New Jersey.
    (2001).
    [37].Stanford research systems, Model SR850 DSP lock-in
    amplifier. Retrieved from https://www.thinksrs.com/downloads/pdfs/manuals/SR850m.pdf
    [38].行政院國家科學委員會,科技發展,第349 期,2002。
    [39].雷射二極體,Thorlabs-LP520-SF15。檢自https://www.thorlabs.com/thorproduct.cfm?partnumber=LP520-SF15
    [40].M. Engelhart, and J. K. Kristensen, “Evaluation of
    Cutaneous Blood Flow Responses by 133Xenon Washout
    and a Laser-Doppler Flowmeter,” J. Invest. Dermatol.
    80(1), 12-15 (1983).
    [41].M. Sasaki, X. Mi and K. Hane, “Standing wave
    detection and interferometer application using a
    photodiode thinner than optical wavelength,” Appl.
    Phys. Lett. 75(14), 2008-2010 (1999).
    [42].M. S. Kim, B. J. Kim, H. H. Lim, and M. Cha,
    “Observation of standing light wave by using
    fluorescence from a polymer thin film and diffuse
    reflection from a glass surface: Revisiting Wiener’s
    experiment,” Am. J. Phys. 77, 761-764 (2009).
    [43].R. J. Moffat, “Describing the uncertainties in
    experimental results,” Exp. Therm. Fluid Sci. 1(1),
    3–17 (1988).
    [44].P. Denbigh, “System Analysis & Signal Processing,”
    Addison-Wesley. (1997).
    [45].P. Hu, Y. Wang, H. Fu, J. Zhu, and J. Tan,
    “Nonlinearity error in homodyne interferometer
    caused by multi-order Doppler frequency shift ghost
    reflections,” Opt. Express 25, 3605–3612 (2017).

    QR CODE
    :::