跳到主要內容

簡易檢索 / 詳目顯示

研究生: Wulan Okta Karunia
Wulan Okta Karunia
論文名稱: Particle Size Distribution of the Active Fault Zone of Chelungpu Fault and Its Implication for Slipping and Energetics of Large Earthquakes
指導教授: 郭力維
Li-Wei Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 91
中文關鍵詞: Taiwan Chelungpu fault Drilling Project (TCDP)Scanning Electron MicroscopeFracture EnergyParticle Size Distribution
外文關鍵詞: Taiwan Chelungpu fault Drilling Project (TCDP), Scanning Electron Microscope, Fracture Energy, Particle Size Distribution
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1999 年,Mw7.6 的集集地震在臺灣的車籠埔斷層北部產生了約10 米的滑動。本研究分析來自臺灣車龍埔斷層深鑽計畫(Taiwan Chelungpu fault Drilling Project;TCDP)中可能記錄同震事件的黑色斷層泥中的主要滑動帶(Principal Slip Zone;PSZ)來估計
    破裂能量及推斷該區域可能的斷層機制。透過場發射掃描式電子顯微鏡,穿透式電子顯微鏡和軟體ImageJ 的分析,我們根據顯著的裂隙和顆粒粒徑的差異將黑色斷層泥分為六層。由於微構造的分析顯示第一層中沒有明顯的破裂及剪切特徵,與目前鑑定之主要滑動帶特徵相似,因此我們將其認定為集集地震的主要滑動帶,並與其他層進行比較。有趣的是,第三層和第五層在微構造的特徵上與第一層相似。由於有奈米顆粒的富集,第一層、第三層和第五層具有相似的碎形維數和模式。此外,第五層具有尚未變形的紋理,暗示該層的產生是經由最近的同震事件,類似於第一層。由於斷層滑動形成的Clay Clast Aggregates (CCAs)在第五層中不能被觀察到,而卻產生在第一層中,表明第五層的物質可能由第一層注入。我們認為第三層可能是舊的同震事件的主要滑
    移帶。由於其本身變形裂縫的特徵,這可能是由於其厚度大於Chi-Chi 的事件。此外,車籠埔斷層的地震破裂似乎不會產生巨大的破裂能,而是轉由釋放摩擦熱。


    The 1999 Mw7.6 Chi-Chi Earthquake produced ~10m slip along the northern Chelungpu fault in Taiwan. This study aims to recognize the Primary Slip Zone (PSZ) in the black gouge from Taiwan Chelungpu-fault Drilling Project (TCDP) sample material which might experience past coseismic events, estimate the fracture energy and infer plausible faulting mechanism in this region. By means of Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and ImageJ analysis, we divide the black gouge into six layers according to the distinguished fracture and grain size. Layer-1 recognized as the Chi-Chi PSZ showing a massive structure, was utilized to compare with all layers. Interestingly, Layer-3 and Layer-5 are microstructurally similar to Layer-1. Because of the abundance of nanoparticles, Layer-1, Layer-3, and Layer-5 have similar fractal dimensions and patterns. Layer-5 has a not-yet-deformed texture implying this layer produced by the recent event, similar to Layer-1. CCAs, as formed from fault sliding, cannot be observed in layer-5 while it occurs in layer-1, suggesting that this layer-5 may have injected by the layer-1. Layer-3 is suggested as the PSZ of the ancient coseismic event from its deformation fissure which may have resulted from a larger event than Chi-Chi from its large thickness. Chelungpu fault seems to have a small fracture energy value that the huge remaining part of breakdown work released as the frictional heat.

    摘要 ................................................................................................................................. ii ABSTRACT ......................................................................................................................... iii ACKNOWLEDGEMENTS .................................................................................................... iv TABLE OF CONTENTS ........................................................................................................ v LIST OF FIGURES ............................................................................................................... vii LIST OF TABLES ................................................................................................................. x CHAPTER 1 INTRODUCTION ....................................................................................................... 1 1.1 Geological Setting ................................................................................................ 1 1.2 Scientific Drilling Project ...................................................................................... 1 1.3 Taiwan Chelungpu-fault Drilling Project (TCDP) .................................................. 3 CHAPTER 2 METHODS AND ANALYSIS ........................................................................................ 10 2.1 TCDP Core Material .............................................................................................. 10 2.2 Scanning Electron Microscope (SEM) .................................................................. 10 2.3 Transmission Electron Microscope (TEM) ........................................................... 11 2.4 Particle Size Analysis ............................................................................................ 12 2.5 Particle Surface Area ............................................................................................ 13 2.6 Calculation of Fracture Energy ............................................................................. 14 CHAPTER 3 RESULTS .................................................................................................................. 20 3.1 Layering of the Gouge .......................................................................................... 20 vi 3.2 Particle Size and Cumulative Distribution ............................................................ 22 CHAPTER 4 DISCUSSION ............................................................................................................. 42 4.1 Two More Primary Slip Zone (PSZ) ....................................................................... 42 4.2 Layer-5 as the Primary Slip Zone and Its Implication ........................................... 44 4.3 Layer-3 as the Primary Slip zone and Its Implication ........................................... 45 4.4 The estimated Fracture Energies for Two Potential PSZ ..................................... 45 CHAPTER 5 CONCLUSIONS ......................................................................................................... 49 REFERENCES ..................................................................................................................... 50 APPENDIX ......................................................................................................................... 55

    Anderson. L. J., Osborne, R. H., and Palmer. D. F., 1983. Cataclastic rocks of the San Gabriel
    fault – An expression of deformation at deeper crustal levels in the San Andreas fault
    zones: Tectonophysics, v. 98, p. 209-251.
    Ando, M. 2001. Geological and geophysical drilling at the Nojima fault: fault trace of the 1995
    Hyogoken Nanbu earthquake, Ms 7.2. The Island Arc 10: 206–214.
    Boullier, A.-M., Ohtani, T., Fujimoto, K., Ito, H., Dubois, M., 2001. Fluid inclusions in
    pseudotachylytes from the Nojima Fault, Japan. Journal of Geophysical Research 106
    (B10), p. 21965-21977.
    Boullier, A.-M., Yeh, E. C., Boutareaud, S., Song, S. R., Tsai, C. H., 2009. Microscale anatomy of
    the 1999 Chi-Chi earthquake fault zone. Geochemistry Geophysics Geosystems 10 (3),
    Q03016.
    Boullier, A.-M., 2011. Fault-zone geology: lessons from drilling through the Nojima and
    Chelungpu fault. Geological Society, London, Special Publications 359, p. 17-37.
    Boutareaud, S., Calugaru, D.- G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., Shimamoto,
    T., 2008. Clay-clast aggregates: a new textural evidence for seismic fault sliding?
    Geophysical Research Letters 35 (5), L05302.
    Brodsky, E. E., Kanamori, H., 2001. Elastohydrodynamic lubrication of faults. Journal of
    Geophysical Research 106, p. 16357-16374.
    Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault zone architecture and permeability
    structure. Geology 24, p. 1025-1028.
    51
    Chang C.P., Angelier, J., Huang C.-Y., Liu, C.-S. 2001. Structural evolution and significance of
    mélange in a collision belt: the Lichi Melange and the Taiwan arccontinent collision.
    Geological Magazine. doi:10.1017/S0016756801005970.
    Chen C.C., Telesca L., Lee C.T., and Sun Y.S., 2011. Statistical Physics of Landslides: New
    Paradigm, EPL Journal.
    Chen, Y. G., Chen, W. S., Lee, J. C., Lee, Y. H., Lee, C. T., Chang, H. C., Lo, H. C., 2001. Surface
    rupture of 1999 Chi-Chi earthquake yields insights on active tectonics of central
    Taiwan. Bulletin of the Seismological Society of America 91, p. 977-985.
    Chester, F. M., and Logan, J. M., 1986. Composite planar fabric of gouge from the Punchbowl
    fault, California: Journal of Structural Geology, v. 9, p. 621-634.
    Chester, J. S., F. M. Chester and A. K. Kronenberg, 2005. Fracture surface energy of the
    Punchbowl fault, San Andreas system, Nature, vol. 437, 133-136.
    Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni G., Shimamoto T., 2006. Natural and
    experimental evidence of melt lubrication of faults during earthquakes. Science 311,
    p. 647-649.
    Han, R., Hirose, T., 2012. Clay-clast aggregates in fault gouge: An unequivocal indicator of
    seismic faulting at shallow depths? Journal of Structural Geology 43, p. 92-99.
    Hirono, T., Sakaguchi, M., Otsuki, K., Sone, H., Fujimoto, K., Mishima, T., Lin, W., Tanikawa,
    W., Tanimizu, M., Soh, W., Yeh, E. C., Song, S. R., 2008. Characterization of slip zone
    associated with the 1999 Taiwan Chi-Chi earthquake: X-ray CT image analyses and
    microstructural observations of the Taiwan Chelungpu fault. Tectonophysics 449, p.
    63-84.
    Hung, J. H., Wu, Y. H., Yeh, E. C., Wu, J. C., TCDP Scientific Party, 2007. Subsurface structure,
    physical properties, and fault zone characteristics in the scientific drill holes of Taiwan
    52
    Chelungpu-fault Drilling Project. Terrestrial, Atmospheric and Oceanic Sciences 18, p.
    271-293, doi: 10.3319/TAO.2007.18.2.271(TCDP).
    Ho, C. S., 1988: An Introduction to the Geology of Taiwan-Explanatory Text of the Geologic
    Map of Taiwan, 2nd Ed., Central Geological Survey, MOEA, Taipei, Taiwan, ROC, 163
    pp.
    Ho, H. C., and M. M. Chen, 2000. Taichung—Explanation Text of the Geological Map of Taiwan
    24, 65 pp.
    Imanishi, K., and Ellsworth, W.L., 2006. Source scaling relationships of microearthquakes at
    Parkfield, CA, determined using the SAFOD pilot hole array. American Geophysical
    Union, 81–80.
    Kanamori, H., Heaton, T. H., 2000. In Geocomplexity and the physics of earthquakes (eds
    Rundle, J. B., Turcotte, D. L. & Klein, W.) (American Geophysical Union, Washington
    DC).
    Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., Ma, K. F., 2006. Heat signature on
    the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake.
    Geophysical Research Letters 33, L14306. doi:10.1029/ 2006GL026733.
    Kuo, L.W., Song, S. R., Yeh, E. C., Chen, H. F., 2009. Clay mineral anomalies in the fault zone of
    Chelungpu Fault, Taiwan, and its Implication, Geophysical Research Letters 36,
    doi:10.1029/2009GL039269.
    Kuo, L.W., Song, S. R., Yeh, E. C., Chen, H. F., Si, J., 2012. Clay mineralogy and geochemistry
    investigations in the host rock of the Chelungpu fault, Taiwan: Implication for faulting
    mechanism. Journal of Asian Earth Sciences 59, p. 208-218
    53
    Kuo, L. W., H. C. Hsiao, S. R. Song, H. S. Sheu and J. Suppe, 2014. Coseismic thickness of
    principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and
    correlated fracture energy. Tectonophysics 619-620, p. 29-35.
    Lee, J. C., Chen, Y. G., Sieh, K., Mueller, K., Chen, W. S., Chu, H. T., Chan, Y. C., Rubin, C., Yates,
    R., 2001. A vertical exposure of the 1999 surface rupture of the Chelungpu fault at
    Wufeng, western Taiwan: structural and paleoseismic implications for an active thrust
    fault. Bulletin of the Seismological Society of America 91, p. 914-929.
    Li, H., Xu, Z., Si, J., Song, S., Sun, Z., Chevalier, M., 2012. Characteristics of the fault-related
    rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault
    Scientific Drilling Project Borehole-1 (WFSD-1). Tectonophysics, 584:23-42
    Ma, K. F., Song, T. R. A., Lee, S. J., Wu, H. I., 2000. Spatial slip distribution of the Septmber 20,
    1999, Chi-Chi, Taiwan, earthquake, Mw 7.6 - Inverted from teleseismic data.
    Geophysical Research Letters 27, p. 3417-3420.
    Ma, K.-F., H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F. Song, E.-C. Yeh,
    W. Soh, H. Sone, L.-W. Kuo and H.-Y. Wu, 2006. Slip zone and energetics of a large
    earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, 473-
    476.Sammis, C. G. and Y. Ben-Zion, Mechanics of grain-size reduction in fault zones, J.
    Geophys. Res., vol. 113, 2008.
    Sibson, R. H., 1977. Fault rocks and fault mechanisms: Geological Society of London Journal,
    v. 133, p. 191-231.
    Song, S. R., Kuo, L. W., Yeh, E. C., Wang, C. Y., Hung, J. H., Ma, K. F., 2007. Characteristics of
    the Lithology, Fault-related Rocks and Fault Zone Structures in the TCDP Hole-A.
    Terrestrial, Atmospheric and Oceanic Science 18, p. 243-269.
    54
    Wang, C. Y., Li, C. L., Su, F. C., Leu, M. T., Wu, M. S., Lai, S. H., Chern, C. C., 2002. Structural
    mapping of the 1999 Chi-Chi earthquake fault, Taiwan by seismic reflection methods.
    Terrestrial, Atmospheric and Oceanic Sciences 13, p.211-226.
    Wilson, B.,Dewers, T., Reches, Z. & Brune, J. 2005. Particle size and energetics of gouge from
    earthquake rupture zones. Nature 434, 749–752.
    Yeh, E. C., Sone, H., Nakaya, T., Ian, K. H., Song, S. R., Hung, J. H., Lin, W., Hirono, T., Wang, C.
    Y., Ma, K. F., Soh, W., Kinoshita, M., 2007. Core Description and Characteristics of Fault
    Zones from the Hole-A of the Taiwan Chelungpu-Fault Drilling Project. Terrestrial,
    Atmospheric and Oceanic Science 18, p. 327-357.
    Yu, S. B., Chen, H. Y., Kuo, L. C., 1997. Velocity field of GPS stations in the Taiwan area.
    Tectonophysics 274, p. 41-59.
    Zoback, M.D., and Hickman, S.H., 2007. Preliminary results from SAFOD Phase 3: implications
    for the state of stress and shear localization in and near the San Andreas Fault at depth
    in central California. Eos, Trans. AGU, 88(52), Fall Meeting Suppl., Abstract T13G-03
    Zoback, M., Hickman, S., Ellsworth, W., 2010. Scientific drilling into the San Andreas fault
    zone: Eos (Transactions, American Geophysical Union) 91, p. 197-199,
    doi:10.1029/2010EO220001.

    QR CODE
    :::