跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱康文
Kang-Wen Chu
論文名稱: 利用多參考站模式化相對對流層天頂向延遲以進行GPS動態定位
Modeling Relative Tropospheric Zenith Delay with Multiple Reference Stations for GPS Kinematic Positioning
指導教授: 吳究
Joz Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 方差分量估計相對對流層天頂向延遲GPS動態定位多參考站
外文關鍵詞: blues, RTZD, GPS kinematic positioning, multiplt reference stations
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用GPS定位受到與距離相關的各種誤差影響,尤其是大氣效應,降低了逐時刻相位模稜(Ambiguity)求定的成功率,也降低了中長距離基線的定位精度。使用多參考站模式化(或內插)參考站與使用者間的各種誤差可以增加使用者移動距離、提升定位精度。
    本研究目的在利用已知坐標找出參考站間相對對流層天頂向延遲(Relative Tropospheric Zenith Delay, RTZD),提供使用者內插改正參數,得到更精確的定位結果。主要工作分成三大部分:(1) 求解網形內各參考站間的RTZD;(2) 模式化這些RTZD;(3) 動態定位。
    實驗結果顯示,若能正確的求解出參考站間的RTZD,並使用適當的內插函數,可使定位精度提升。


    The distance-dependent GPS errors, notably atmospheric refraction, reduce the success rate of epoch-by-epoch ambiguity resolution, and limit the GPS positioning accuracy, especially for medium- to long-range baselines. Using multiple reference stations to model (or interpolate) the distance-dependent biases between the reference station and a rover can extend the distance or improve the positioning accuracy.
    The objective of this research is to find out the relative tropospheric zenith delays (RTZD) between different reference stations by using known coordinates and to provide rovers with interpolated corrections for more precise positioning. The project consists of three major steps: (1) finding out the RTZDs between reference stations, (2) modeling the RTZDs, and (3) kinematic positioning.
    Test result indicates that if the RTZDs between different reference stations can be resolved successfully, and a proper interpolation model is used, it is possible to improve the positioning accuracy.

    目錄 I 圖目錄 III 表目錄 V 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 論文架構 4 第二章 GPS衛星測量基礎理論 5 2-1 GPS衛星之觀測量 5 2-1-1 虛擬距離觀測方程式 6 2-1-2 載波相位觀測方程式 8 2-1-3 差分模式 11 2-2 白化濾波理論與相位模稜搜尋 14 2-2-1 白化濾波理論 14 2-2-2 相位模稜搜尋 16 2-3 費雪統計檢定 19 第三章 參數估計與隨機模式 20 3-1 最小二乘混和平差模式 20 3-2 觀測量之隨機模式 23 3-2-1 BLUE方差分量估計 24 3-2-2 陪伴矩陣的給定 26 第四章 多參考站GPS動態定位演算法 27 4-1 參考站間RTZD解算 27 4-2 模式化RTZD 35 4-3 動態定位 36 第五章 實驗成果與分析 38 5-1 實驗資料背景 38 5-2 實驗成果 40 5-2-1 短基線多參考站定位成果 41 5-2-2 中長距離基線多參考站定位成果 45 5-2-3 不同內插模式之比較 50 5-2-4 同日期不同時間之比較 56 第六章 結論與建議 61 6-1 結論 62 6-2 建議 63 參考文獻 64

    吳究、葉添福,「衛星定位L1/L2載波相位BIQUE方差分量估計」,第五屆GPS衛星科技研討會論文集,第135-138頁(2002)。
    林修國,「相位模稜求定與時鐘偏差估計應用與衛星相對定位姿態求解」,博士論文,國立中央大學大氣物理研究所,中壢(1997)。
    徐浩雄,「白化濾波應用於GPS動態衛星定位測量之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2000)。
    黃昭銘,「消去GPS 相位模稜OTF 相對定位之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2001)。
    Ahn, Y. W., Lachapelle, G., Skone, S., Gutman, S., Sahm, S., “Analysis of GPS RTK performance using external NOAA tropospheric corrections integrated with a multiplt reference station approach.” GPS Solutions, Vol. 10, No.3, pp. 171-186 (2006).
    Bierman, G. J., Factorization Methods for Discrete Sequential Estimations, Acdemic Press, Inc., New York (1977).
    Crocetto, N., Gatti, M., and Russo, P., “Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups.” Journal of Geodesy, Vol. 74, No. 6, pp. 447-457(2000).
    Dai, L., Han, S., Wang, J., and Rizos, C., “Comparison of interpolation algorithms in network-based GPS techniques.” Navigation, Vol. 50, No. 4, pp. 277-293 (2003).
    Goad, C. C. and Yang, M., “A new approach to precision airborne GPS positioning for photogrammetry.” Photogrammetric Engineering & Remote Sensing, Vol. 63, No. 9, pp. 1067-1077 (1997).
    Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., Global positioning system theory and practice, 4th edition. Springer, Wien New York (1997).
    Horemuž, M. and Sjöberg, L. E., “Rapid GPS ambiguity resolution for short and long baselines.” Journal of Geodesy, Vol. 76, No. 6-7, pp. 381-391 (2002).
    Hu, G. R., Khoo, H. S., Goh, P. C., and Law, C. L., “Development and assessment of GPS virtual reference stations for RTK positioning.” Journal of Geodesy, Vol. 77, No. 5-6, pp. 292-302 (2003).
    Lachapelle, G., Cannon, M. E., and Lu, G., “High-precision GPS navigation with emphasis on carrier-phase ambiguity resolution.” Marine Geodesy, Vol. 15, No. 4, pp. 253-269 (1992).
    Leick, A., GPS satellite surveying, 3rd edition. John Wiley & Sons, Inc., Hoboken (2004).
    Mohamed, A. H. and Schwarz, K. P., “A simple and economical algorithm for GPS ambiguity resolution on the fly using a whitening filter.” Navigation, Vol. 45, No. 3, pp. 221-231 (1998).
    Teunissen, P. J. G., “The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation,” Journal of Geodesy, Vol. 70, No. 1-2, pp. 65-82 (1995).
    Teunissen, P. J. G. and Kleusberg, A., “GPS observation equations and positioning concept.” In: Kleusberg, A. And P. J. G. Teunissen (eds), GPS for Geodesy, Lecture Notes in Earth Sciences, Vol. 60, No. 5, Springer-Verlag, Berlin, pp.175-217 (1996).
    Teunissen, P. J. G., de Jonge, P. J., and Tiberius, C. C. J. M., “Performance of the LAMBDA method for fast ambiguity resolution.” Navigation, Vol. 44, No. 3, pp. 373-383 (1997).
    Tiberius, C. and Kenselaar, F., “Variance component estimation and precise GPS positioning: case study.” Journal of Surveying Engineering, Vol. 129, No. 1, pp. 11-18 (2003).
    Wang, J., Stewart, M. P., and Tsakiri, M., “A discrimination test procedure for ambiguity resolution on-the-fly.” Journal of Geodesy, Vol. 72, No. 11, pp. 644-653 (1998).
    Wielgosz, P., Kashani, I., Grejner-Brzezinska, D., “Analysis of long-range network RTK during a severe ionospheric storm.” Journal of Geodesy, Vol. 79, No. 9, pp. 524-531 (2005).
    Wu, J. and Yeh, T. F., “Single-epoch weighting adjustment of GPS phase observables.” Navigation, Vol. 52, No. 1, pp. 39-47 (2005).
    Xu, P., “Random simulation and GPS decorrelation.” Journal of Geodesy, Vol. 75, No. 7-8, pp. 408-423 (2001).

    QR CODE
    :::