跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾郁文
Yu-Wen Tseng
論文名稱: 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
A Research of Laser Tool-Path Generation for 5-Axis Microfacturing System Based on Two-Photon Photopolymerization Technology
指導教授: 廖昭仰
Chao-Yaug Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 雙光子聚合雙光子吸收微製造層加工五軸精密製造雷射路徑生成法則
外文關鍵詞: micro-manufacturing, 5-axis precision manufacturing, path planning for laser scanning
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文發展一套適合雙光子聚合技術(Two-photon Polymerization, TPP)之五軸雷射加工路徑生成法則。
    本論文首先介紹一般典型TPP加工程序包含雷射路徑掃描、TPP切層方法及製造品質控制。其次介紹TPP五軸實驗設備,包含雷射、顯微鏡、樹酯材料及五軸運動平台。進而提出本論文開發的五軸雷射加工路徑生成法則。
    本論文將以TPP微製造技術為基礎,創新使用五軸加工方法為輔,開發出一套可製造超高精度微結構的五軸加工路徑生成法則。其創新的點除了以五軸運動平台來取代傳統使用的三軸平台外,其開發之雷射加工路徑生成法則中會先使用臨界角將微結構外表區分出兩種不同區域。利用拼布的概念將此兩不同區域分別產生出表布切層及縫布切層路徑,其中將以適應性切層演算法產生表布路徑及利用輪廓平形偏移演算法來產生縫布路徑。最後會以五軸輪廓切線成形法來產生最後的五軸雷射加工路徑,其概念係控制五軸運動平台讓雷射光軸沿著微結構的外表切線垂直方向移動,如此將可以產生與微結構表面垂直的聚合體,以避免傳統TPP使用三軸運動平台而導致尺寸不精確情況發生。其所製造的3D微結構具有較佳的結構強度與超高尺寸精度,可應用於各式不同的應用。
    本論文最後將舉5種不同實體模型,利用本論文提出之五軸雷射加工路徑生成法則產生出切層結果和雷射路徑,用以驗證本研究之正確性及效率。


    This paper studies the laser tool path generation for 5-axis micro-fabrication system by Two-photon Polymerization(TPP).
    At the beginning of this paper, there is an introduction about the laser scanning path by traditional TPP, slicing method and product properties by TPP. Second, we will go on to the introduction about the experimental equipment for 5-axis based on the TPP with laser, microscope, resin material and motion platform by 5-axis. Furthermore, the paper presents the development of the laser tool path generation for 5-axis micro-fabrication system.
    This paper will develop a laser tool path generation for fabricating structures with ultra-precision based on TPP micro-fabrication and 5-axis machining techniques. Laser tool path generation will be developed using the critical slicing angle to distinguish between two different area. Using the Patch concept were to produce two different area of the Sheet fabric and Sewing fabric. In this method, adaptive slicing process to generation the Sheet path and using the contour offset algorithm to generation the Sewing path. Finally, the contour will be tangential axis forming method to produce the final laser tool path for 5-axis micro-fabrication system. In this method, the laser focus moves along the vertical contour of a microstructure by 5-axis motion stage and polymerized at the perpendicular direction of the tangent. This can avoid the dimensional deformation which is usually caused by applying 3-axis stage in general. The 3D microstructure fabricated by proposed process has better structure strength and ultra-high dimensional accuracy, that can suit for a variety of applications.
    Finally, this paper will include 5 different models, using the development of the laser tool path generation for 5-axis micro-fabrication system in this paper to generate the laser scanning path. It can to verify the accuracy and efficiency of this paper.

    摘 要 i Abstract ii 致謝 iii 目錄 iv 圖 目 錄 vi 符號說明 xi 第一章 緒 論 1 1-1 研究背景 1 1-2 雙光子微製造之文獻回顧 5 1-3 輪廓平形加工法之文獻回顧 10 1-4 研究動機與目的 13 1-5 論文架構 15 第二章 理 論 說 明 16 2-1 雙光子吸收之光致聚合反應 16 2-2 雙光子聚合微製造技術與系統 18 2-3 傳統五軸加工簡介 23 2-4 小結 26 第三章 TPP五軸雷射加工路徑生成 29 3-1 網格模型資料結構之定義與建立 29 3-2 切層模型資料結構之定義與建立 33 3-3 拼布切層演算法 37 3-3.1 萃取表布與縫布區域 39 3-3.2 表布切層資料生成 41 3-3.3 縫布切層之PS曲線生成 43 3-3.4 縫布切層之二維偏移PS曲線生成 46 3-3.5 縫布切層之三維PS曲線生成 52 3-4 五軸雷射加工路徑規劃 54 3-4.1 體素曝光位置 54 3-4.2 五軸輪廓切線成形法 59 3-5 輸出五軸雷射加工路徑格式定義 63 第四章 結 果 與 驗 證 67 4.1 人機介面介紹 67 4.2 範例驗證 69 第五章 結論與未來展望 80 5-1 結論 80 5-2 未來展望 81 參 考 文 獻 82

    [1] Miwa, M., Juodkazis, S., Kawakami, T., Matsuo, S., and Misawa, H., “Femtosecond Two-Photon Stereo-Lithography,” Applied Physics A, Vol. 73, No. 5, pp. 561-566, 2001.
    [2] Bhawalkar, J. D., Kumar, N. D., Zhao, C. F., and Prasad, P. N., “Two-photon photodynamic therapy,”, Journal of Clinical Laser Medicine and Surgery, Vol. 15, No. 5, pp. 201-204, 1997.
    [3] Li, L., Gattass, R. R., Gershgoren, E., Hwang, H., and Fourkas, J. T., “Achieving λ/20 Resolution by One-Color Initiation and Deactivation of Polymerization”, Science, Vol.324, pp.910-913, 2009.
    [4] Kawata, S., Sun, H. B., Tanaka, T., and Takada, K.,“Finer Features Microdevices”, Nature, Vol.412, pp.697-698, 2001.
    [5] Sun, H. B., Kawakami, T., Xu, Y., Ye, J. Y., Matuso, S., Misawa, H., Miwa, M., and Kaneko,R., “Re Three-Dimensional Microstructures Fabricated by Photopolymerization of Resins Through Two-photon Absorption”, Optics Letters, Vol.25, pp.1110-1112, 2000.
    [6] Kumi, G., Yanez, C. O., Belfield, K. D., and Fourkas, J. T., “High-Speed Multiphoton Absorption Polymerization: Fabrication of Microfluidic Channels with Arbitrary Cross-Sections and High Aspect Ratios”, Lab on a Chip, Vol.10, pp.1057-1060, 2010.
    [7] Zhang, Y. L., Chen, Q. D., Xia, H., and Sun, H. B., “Designable 3D Nanofabrication by Femtosecond Laser Direct Writing”, Nano Todprocessay, Vol.5, pp.435-448, 2010.
    [8] Wu, D., Wu, S. Z., Niu, L. G., Chen, Q. D., Wang, R., Song, J. F., Fang, H. H., and Sun, H. B., “High Numerical Aperture Microlens Arrays of Close Packing”, Applied Physics Letters, Vol.97, No. 3, pp. 031109, 2010.
    [9] Byung, J. J., Hong, J. K., Cho, Y. H., Lee, K. S, Chung, H. P., Yang, D. Y., and Lee K. S. “Fabrication of Sharp-needled conical polymer tip on the cross-section of optical fiber via two-photon polymerization for tuning-fork-based atomic force microscopy”, Journal of Optics Communications, Vol.286, pp. 197-203, 2013.
    [10] Engelhardt, S., Hoch, E., Borchers, K., Meyer, W., Krüger, H., Tovar, G. E. M., and Gillner, A., “Fabrication of 2D Protein Microstructures and 3D Polymer-Protein Hybrid Microstructures by Two-Photon Polymerization”, Biofabrication, Vol.3, 025003, 2011.
    [11] Manuela T. R., Shane M. E., Matteo L., Veronica A., and Michele M. N., “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing”, Journal of Acta Biomaterialia, Vol.9, pp. 4579-4584, 2013.
    [12] Xia, H., Wang, J., Tian, Y., Chen, Q. D., Du, X. B., Zhang, Y. L., He, Y., and Sun, H. B.,“Ferrofluids for Fabrication of Remotely Controllable Micro-Nanomachines by Two-Photon Polymerization”, Advanced Materials, Vol.22, pp.3204-3207, 2010.
    [13] Maruo, S., Ikuta, K., and Korogi, H.,“Submicron Manipulation Tools Driven by Light in a Liquid”, Applied Physics Letters, Vol.82, pp.133-135, 2003.
    [14] Tosa, N., Bosson, J., Pierre, M., Rambaud, C., Bouriau, M., Vitrant, G., Stéphan, O., Astilean, S.,and Baldeck, P. L., “Optical Properties of Metallic Nanostructures Fabricated by Two-Photon Induced Photoreduction”, Proceedings of SPIE, Vol.6195, 619501, 2006.
    [15] Park, S. H., Lee, S. H., Yang, D. Y., Kong, H. J., and Lee, K. S.,“Subregional Slicing Method to Increase Three-Dimensional Nanofabrication Efficiency in Two-Photon Polymerization”, Applied Physics Letters, Vol.87, 154108, 2005.
    [16] Takada, K., Sun, H. B., and Kawata, S., “Improved Spatial Resolution and Surface Roughness in Photopolymerization-Based Laser Nanowriting”, Applied Physics Letters, Vol.86, 071122, 2005.
    [17] Stichel, T., Hecht, B., Houbertz, R., and Sextl, G., “Two-Photon Polymerization as Method for the Fabrication of Large Scale Biomedical Scaffold Applications”, Journal of Laser Micro/Nanoengineering, Vol.5, pp. 209-212, 2010.
    [18] Correa, D.S., Cardoso, M.R., Tribuzi, V., Misoguti, L., and Mendonca, C. R., “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromaching”, Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 1, pp. 176-186, 2012.
    [19] Divliansky, I. B., Weaver, G., Petrovich, M., Jabbour, T., Seigneur, H. P., Parnell-Lampen, C., Thompson, A., Belfield, K. D., and Kuebler, S. M., “CAD-Integrated System for Automated Multi-Photon Three-Dimensional Micro- and Nano-Fabriction”, Progress in Biomedical Optics and Imaging – Proceedings of SPIE, 5720, pp.196-203, 2005.
    [20] Cunningham, L. P., Veilleux, M. P., and Campagnola, P. J., “Freeform Multiphoton Excited Microfabrication for Biological Applications Using a Rapid Prototyping CAD-based Approach”, Optics Express, Vol.14, pp.8613-8621, 2006.
    [21] Sun, H. B., and Kawata, S., “Two-Photon Laser Precision Microfabrication and Its Applications to Micro-Nano Devices and System”, Journal of Lightwave Technology, Vol. 21, pp. 624-633, 2003.
    [22] Wu, S., Serbin, J., and Gu, M., “Two-Photon Polymerization for Three-Dimensional Micro-Fabrication”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 181, pp. 1-11, 2006.
    [23] Liao, C.Y., Bouriau, M., Baldeck, P., Léon, J.C., Masclet, C. and Chung, T.T., “Two-dimensional slicing method to speed up the fabrication of mirco-objects based on two-photon polymerization”, In Apply Physics Letter, 91, 033108, 2007.
    [24] Park, S.C., and Choi, B.K., “Uncut Free Pocketing Tool-paths Generation Using Pair-wise Offset Algorithm”, Computer-aided Design-CAD, Vol.33, pp. 739-746, 2001.
    [25] Choi, B.K., and Park, S.C., “A Pair-wise Offset Algorithm for 2D Point-sequence Curve”, Computer-aided Design-CAD, Vol.31, pp. 735-745, 1999.
    [26] Chang, M., Kim, C.M., and Park, S.C., “Tool-path Generation for Sidewall Machining”, Computers and Industrial Engineering, Vol.56, pp. 1649-1656, 2009.
    [27] Jeong, J., and Kim, K., ”Tool-path generation for machining free-form pockets using Voronoi diagrams”, Journal of Advanced Manufacturing Technology, Vol. 14, pp. 876-881, 1998.
    [28] Kim, H. C., Lee, S. G., and Yang, M. Y., “A new offset algorithm for closed 2D lines with Islands”, International Journal of Advanced Manufacturing Technology - INT J ADV MANUF TECHNOL , vol. 29, no. 11, pp. 1169-1177, 2006
    [29] Charkraborty, D., Reddy, B.A., and Choudhury, A.R., “Extruder path generation for Curved Layer Fused Deposition Modeling”, Computer-Aided Design , vol. 40, pp. 235-243, 2008.
    [30] Yang, D. Y., Park, S. H., Lim, T. W., Kong, H. J., Yi, S. W., Yang, H. K., and Lee, K. S., “Ultraprecise Microreproduction of a Three-dimensional Artistic Sculpture by Multipath Scanning Method in Two-photon Photopolymerization”, Applied Physics Letters, 90, 079903, 2007.
    [31] Maruo, S. and Fourkas, J. T., “Recent Progress in Multiphoton Microfabrication”, Laser & Photonics Reviews, Rev.2, No. 1-2, pp. 100-111, 2008.
    [32] Sun, H. B., Maeda, M., Takada, K., Chon, J. W. M., Gu, M., and Kawata, S., “Experimental Investigation of Single Voxel for Laser Nanofabrication via Two-Photon Photopolymerization”, Applied Physics Letters, Vol. 83, pp. 819-821, 2003.
    [33] Park, S. H., Lim, T. W., Yang, D. Y., Yi, S. W., and Kong, H. J., “Direct Fabrication of Micropatterns and Three-Dimensional Structures Using Nanoreplication-Printing (nRP) Process,” Sens. Mater., Vol. 17, pp. 065-075, 2005.
    [34] Lim, T. W., Park, S. H., and Yang, D. Y., “Contour Offset Algorithm for Precise Patterning in Two_Photon Polymerization”, Microelectronic Engineering, Vol. 77, pp. 382-388, 2005.
    [35] Tanaka, T., Sun, H. B., and Kawata, S., “Rapid Sub-Diffraction-Limit Laser Micro/Nanoprocessing in a Threshold Material System”, Applied Physics Letters, Vol. 80, No. 2, pp. 312-314, 2002.
    [36] 潘恩亞、蒲念文、董玉平與游漢輝,「雙光子吸收光致聚合技術應用於微元件製作之研究」,中正嶺學報,34 卷,1-16 頁,2005。
    [37] Sun, H. B., Takada, K., Kim, M. S., Lee, K. S., and Kawata, S., “Scaling Laws of Voxels in Two-Photon Photopolymerization Nanofabrication”, Applied Physics Letters, Vol. 83, No. 6, pp. 1104-1106, 2003.
    [38] 王元男、黃淑君、陳慧玲主編,NO CUTTING LIMIT -5 AXES,恩德科技,苗栗縣,民國一百年五月。

    QR CODE
    :::