| 研究生: |
周佳俞 JIA-YU, JHOU |
|---|---|
| 論文名稱: |
彈性材料橢圓型微孔開孔準則之近似解計算 |
| 指導教授: | 李顯智 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 橢圓型微孔開孔準則 、彈性材料 、近似解計算 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含圓球微孔之不可壓縮材料受三軸拉力的力學問題,過去三十年,相關的研究不少,特別是John Ball在1982年發表的文章,另Hou和Abeyaratne在1992年發表的文章,由於問題不再具有圓對稱性,其求解析解之挑戰度極大, Hou和Abeyaratne提出近似解尊稱為Hou-Abeyaratne Field(簡稱HAF)。
本文推導出目前較少被推廣的橢球微孔之不對稱變形,利用HAF導入本文方法重新推導,再利用虛功原理推導出對應矩陣式,並繪出所得不同橢球微孔之破壞包絡線,並分析及探討其結果。
In last three decades, there are so many realated researchs about the mechanics problem of the incompressible material containing microporosity subjected to triaxial loading.Especially, the research published by John Ball in 1982 and the research published by Hou and Abeyaratne in 1992.It become a great challenge to obtain the analytical solution due to the problem possess no longer circular symmetry.
Hou and Abeyaratne propose that the approximate solution is called Hou-Abeyaratne Field.
The theme derivate the asymmetrical deformation of the ellipsoidal micro-void by importing the HAF, and use the principle of virtual work to derivate the corresponding matrix and draw the failure envelope of different ellipsoidal micro-void, and discuss the result.
[1]F. A. Mcclintock , A Criterion For Ductile Fracture By The Growth Of Holes. J. Appl. Mech. 35(1968), 363-371.
[2]A. Needleman, Void Growth In An Elastic-Plastic Medium. J. Appl. Mech. 39(1972) 964-970.
[3]A. L. Gurson, Continuum Theory Of Ductile Rupture By Void Nucleation And Growth: Part I—Yield Criteria And Flow Rules For Porous Ductile Media. J. Energ. Matl. Tech. , Trans.Asme,(1977) 2-15.
[4]U. Stigh, Effects Of Interacting Cavities On Damage Parameter. J. Appl. Mech. 53(1986), 485-490.
[5]H.S.Hou and R.Abeyarante,Cavitation in elastic and elastic-plastic solids,J Mech Phys.Solids,40(1992)571-592
[6]A. N. Gent ,Cavitation In Rubber: A Cautionary Tale. Rubber Chem. Tech., 63(1990) 49-53.
[7]J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
[8]C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
[9]C. Fong, Cavitation Criterion For Rubber Materials: A Review Of Void-Growth Models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
[10]J.Sivaloganathan and S.J.Spector,On Cavitation,configurational forces and implications for fracture in a nonlinearly elastic material.J.of Elasticity,67(2002)25-49
[11]E. Bayraktar , Et. Al., Damage Mechanisms In Natural (Nr) And Synthetic Rubber (Sbr): Nucleation, Growth And Instability Of The Cavitation. Fatique Fract. Engrg. Mater. Struct. , 31(2008)184-196
[12]T.W.Wtight and K.T.Ramesh,Dynamic void nucleation and growth in solids:A self-consistent statistical theory.J.Mech.Phys,Solids,56(2008)336-359
[13]S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material.Int.J.Non-Linear Mech.,30(1995)899-914
[14]S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void J.Appl.Mech.61(1994)395-401.
[15]C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
[16]R.Cortes,The growth of microvoids under intense dynamic loading. Int. J. Solids Struct. 29(1992)1339-1350
[17]M.-S. Chou-Wang and C.O.Horgan, Cavitation in nonlinear elast-dynamics for neo-Hookean materials,In t. J. Eng. Sci, 27(1989)967-973
[18]X. Yuan,Z. Zhu and R.Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelatic materials , In t. J. N-L.Mech,41(2006)294-303
[19]J.Sivaloganathan and S.J.Spector,On Cavitation,configurational forces and implications for fracture in a nonlinearly elastic material.J.of Elasticity,67(2002)25-49
[20]M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
[21]J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
[22]. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.