| 研究生: |
蘇千傑 Chien-chieh Su |
|---|---|
| 論文名稱: |
以概念為維度之向量空間模型為基礎以進行文件分群之研究 Document clustering based on vector space model with concepts as the dimension value |
| 指導教授: |
周世傑
Shih-chieh Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 知識管理 、概念擷取 、向量空間模型 、文件分群 、資訊檢索 |
| 外文關鍵詞: | knowledge management, concept extraction, vector space model, document clustering, information retrieval |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在資訊檢索相關研究中,文件分群是用來令使用者能夠更加快速找到自己所需資訊的技術,利用分群的結構,我們可以有效的管理各種知識與資訊,它是一門知識管理的工具。
文件分群通常需要進行文件相似度比對,傳統上利用文章中的字彙當作向量空間模型的維度,此種方式,有一項弱點,即當兩篇文章在語意上相同,但用不同的字彙呈現時,會無法準確判斷文章間相似度而使文件分群困難。本研究結合了概念擷取與向量空間模式(Vector space model)兩種技術來協助文件分群,希望能夠以文章中所涵蓋的概念來代表文章,然後產生一個以概念為維度的向量空間模型,已進行文件相似度比對,希望能提高文件相似度比對的效能,進而使分群的效果更加完善。
我們進行了實驗來觀察使用概念為維度的向量空間模型,是否比傳統使用字彙為維度的向量空間模型,對於文件分群,具有更佳的效能,結果顯示使用概念為維度的向量空間模型,確實能夠幫助我們對文件作更準確的分群。
In Information Retrieval, document clustering is a technology that can enhance the efficiency in the retrieving of needed information. With document clustering, one can efficiently management all kinds of knowledge and information. Document clustering is a tool for knowledge management.
Traditionally, document clustering is based on document similarity comparison where the document is represented by the vector space model with term as the dimension value. In this approach, the documents with the same semantic meaning might be classified as unsimilar because they are described with different words.In this research, we have integrated the technology of concept extraction with vector space model for document similarity comparison. We extract concepts from the documents first, then create a vector space model with the extracted concepts as the dimension value for the document. Documents similarity comparison is based on the concept-dimensioned vector space model. We wish that the concept based vector space model could enhance the document clustering efficiency.
We have experimented with the document clustering effect for the concept based vector space modle. The results show that the concept based vector space model can perform better than term based vector space model.
[1] P. G. Anick and S. Tipirneni. The paraphrase search assistant: terminological feedback for iterative information seeking. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages 153-159, 1999.
[2] R. Baeza-Yates and B. Robeiro-Neto. Modern Information Retrieval. Addison-Wesley Longman, pages 19-69, 1999.
[3] Lijuan Cai and Thomas Hofmann. Text Categorization by Boosting Automatically Extracted Concepts. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, pages 182-189, 2003.
[4] Hung Chim. A new suffix tree similarity measure for document clustering. In Proceedings of the 16th international conference on World Wide Web, pages 121-130, 2007.
[5] N. Fuhr. Probabilistic model in information retrieval. The Computer Journal, 35(3):243-255, 1992.
[6] Sreenivas Gollapudi and Rina Panigrahy. Exploiting asymmetry in hierarchical topic extraction. In Proceedings of the 15th ACM international conference on Information and knowledge management, pages 475-482, 2006.
[7] A. Griffith, H. C. Luckhurst, and P. Willet. Using inter-document similarity information in document retrieval systems. Journal of the American Society for Information Science, 37(1):3-11, 1986.
[8] Dawn Lawrie, W. Bruce Croft, and Arnold Rosenberg. Finding topic words for hierarchical summarization. In Proceedings of 24th annual international ACM SIGIR conference on Research and development in information retrieval, pages 349-357, 2001.
[9] D. D. Lewis. Reuters-21578 Text Categorization Test Collection Distribution, Distribution 1.0. AT&T Labs-Research, 1997.
[10] Nyeint Nyeint Myat and Khin Haymar Saw Hla. A combined approach of formal concept analysis and text mining for concept based document clustering. In Proceedings of the 2005 IEEE/WIC/ACM international conference on web intelligence, pages 330-333, 2005.
[11] Chowdhury Mofizur Rahman, Ferdous Ahmed Sohel, Parvez Naushad, and S. M. Kamruzzaman. Text classification using the concept of association rule of data mining. In Proceeding of the International Conference on Information Technology, pages 23-26, 2003.
[12] E. Rasmussen. Clustering algorithms. In W.B. Frakes and R. Baeza-Yates, editors, Information Retrieval, pages 419-442. Prentice Hall, Eaglewood Cliffs, N.J., 1992.
[13] S. E. Roberston and K. Sparck Jones. Relevance Weighting of search terms. Journal of the American Society for Information Sciences, 27(3):129-146, 1976.
[14] W. M. Shaw Jr., R. Burgin, and P. Howell. Performance standards and evaluations in IR text collections: Cluster-based retrieval models. Information processing & management, 33(1):15-36, 1997.
[15] G. Salton and M. E. Lesk. Computer evaluation of indexing and text processing. Journal of the ACM, 15(1):8-36, January 1968.
[16] Mark Sanderson and Bruce Croft. Deriving concept hierarchies from text. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages 206-213, 1999.
[17] C. J. van Rijsbergen. Information Retrieval. Butterworths, London, second edition, pages 23-43, 1979.