| 研究生: |
李春明 Chun-Ming Lee |
|---|---|
| 論文名稱: |
以岩體分類探討非構造性控制破壞之 Stability of rock slope with non-structural control failures |
| 指導教授: |
董家鈞
Jia-Jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 邊坡反應曲線 、邊坡穩定分析 、地質強度指標 、岩體分類法 、最陡安全開挖坡度 、岩石邊坡 |
| 外文關鍵詞: | slope performance curves, slope stability, Geological Strength Index, rock mass classification, maximum excavation angle, rock slope |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文藉以岩體分類的觀點,探討非構造性控制破壞下岩坡之最陡安全開挖坡度。基於地質強度指標GSI,結合非線性之Hoek and Brown (2002)破壞準則以及線性之摩爾-庫倫破壞準則,以迴歸獲得不同坡高應力範圍下之岩體強度參數c''與 ;再利用Janbu邊坡穩定分析設計圖,反推不同坡高與不同岩體強度下,安全係數(FS)為1時的岩坡開挖坡度,並將其計算結果展繪為邊坡反應曲線Slope performance curve。
研究結果顯示:(1)不同坡高所造成之應力範圍,會直接影響岩體強度參數的評估,因此在評估岩坡穩定坡度時所使用之強度參數,應將坡高或應力條件納入考慮;(2)岩坡的岩石單壓強度,為非構造控制破壞之最陡安全開挖坡度中較為重要影響因素,相對而言,岩性係數顯得不那麼敏感;(3)岩坡之開挖施工擾動會直接影響岩體強度,尤其當岩體構造GSI評值不大時,岩體強度更會明顯降低;(4)依不同岩石強度與岩性展繪之GSI Slope performance curve可用來合理且簡易的評估岩坡最陡安全開挖坡度。
Stability of rock slope with non-structural control failures is studied in this thesis. Based on Non-linear Hoek-Brown failure criterion (2002), cohesion c'' and frictional angle of the rock slope for different height (different stress range) are determined in conjunction with Geological Strength Index GSI. The maximum excavation angle (FS=1) with non-structural control failures of rock slope for different height can be evaluated using Janbu slope-stability chart. Consequently, GSI-based slope performance curves are constructed.
The important results are summarized as follows: (1) Rock mass strength parameters are functions of stress range. Therefore, the height of rock slope should be taken into consideration for evaluating the maximum excavation angle. (2) Unconfined compressive strength of intact rock is a primary factor for evaluation of the maximum excavation angle with non-structural control failures. Relatively, the effect of material constant on the maximum excavation angle is minor. (3) Disturbance of excavation reduces the rock mass strength. The lower the GSI is the effect is more predominant. (4) GSI-based slope performance curves, taking the intact rock strength and material constants into consideration, are useful for evaluation the maximum excavation angle of rock slope.
參考文獻
Bieniawski, Z. T., 1973. “Engineering classification of jointed rock masses,” Trans. S. Afr. Inst. Civ. Eng, Vol. 15, pp. 355-344.
Bieniawski, Z. T., 1976. “Rock mass classification in rock engineering,” In Proc. Symp. Exploration for Rock Eng, Vol. 1, pp. 97-106.
Bieniawski, Z. T., 1989. Engineering Rock Mass Classification, Wiley, New York.
Barton, N. R., and Choubey, V., 1977. “The shear strength of rock joints in theory and practice,” Rock Mech, 10(1-2), pp. 1-54.
Duran, A., and Douglas, K., 1999. “Do slopes designed with empirical rock mass strength criteria stand up?” 9th ISRM International Congress on Rock Mechanics, Paris, France, Vol. 1, pp. 87-90.
Hall, B. E., 1985. “Preliminary estimation of slope angle,” Symp.on Rock Mass Characteristics, pp. 12-21.
Hoek E., and Bray J. W., 1981. Rock Slope Engineering, 3nd ed., The Institution of Mining and Metallurgy.
Hoek, E., Kaiser, P. K., and Bawden. W. F., 1995. Support of underground excavations in hard rock, Rotterdam: Balkema.
Hoek E., Read J., Karzulovic A., and Chen Z. Y., 2000. “Rock slopes in civil and mining engineering, ” Proc.GeoEng, Melbourne. cd-rom.
Hoek E., and Brown, E. T., 1997. “Practical estimates of rock mass strength,” Intnl. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts,Vol. 34, No. 8, pp. 1165-1186.
Hoek, E., Torres, C. T., and Corkum, B., 2002. “Hoek-Brown failure criterion:2002 edition,” Proceedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, 1-6..
Haines A., and Terbrugge P. J., 1991. “Preliminary estimation of rock slope stability using rock mass classification systems,” Proc. 7th Cong. on Rock Mechanics, ISRM, Aachen, Germany. 2.ed. Wittke W. publ. Balkema, Rotterdam, pp. 887-892.
Hack, H. R. G. K., 1998. “Slope Stability Probability Classification,” ITC Delft Publication, Vol. 43, Enschede, Netherlands, pp. 273.
Hougton, D. A., 1976. “The role of rock quality indices in the assessment of rock masses,” Proc. Symp. Expl. Rock Eng., Johannesburg, Balkema, Cape Town, Vol. 1, pp. 129–135.
ISRM, 1981. Rock Characterization, Testing and Monitoring, ISRM suggested methods. ed. E.T. Brown.publ. Pergamon Press, Oxford, pp. 211.
Janbu, N., 1973. Slope stability computation. In: Hirsch.eld, R.C., Paulos, S.J. (Eds.), Embankment Dam Engineering: Casagrande Memorial Volume. Wiley, New York, pp. 47–87.
Laubscher, D. H., 1975. “Class Distinction in Rock Masses,” Coal, Gold and Base Minerals of Southern Africa, pp. 37-50.
Laubscher, D. H., 1977. “Geomechanics classification of jointed rock masses mining applications,” Trans. Instn. Min. Metall, Vol. 86, A1-8.
Laubscher D. H., 1990. “A geomechanics classification system for the rating of rock mass in mine design,” Journal South African Institution Mining and Metallurgy, Vol. 90, pp. 257–73.
Lindsay P., Campbell R. N., Fergusson D. A., Gillard G. R., and Moore T. A., 2001. “The slope stability probability classification, Waikato Coal Measures, New Zealand,” International Journal of Coal Geology, Vol. 45, pp. 127-145.
Moon, B. P., Selby, M.J. 1983. “Rock Mass Strength and Scarp Forms,” Southern Africa, Geografisika annaler.
Moon, V. G., Russell, G., and Stewart, M., 2001. “The value of rock mass classification systems for weak rock masses: a case example from Huntly, New Zealand,” Engineering Geology, Vol. 61., pp. 53-67.
Norrish N. I., and Wyllie D.C., 1996. “Rock slope stability analysis,” Landslide, investigation and mitigation, Turner and Schuster eds., Transportation Research Board Special Report 247.
Orr, C. M., 1992. “Assessment of rock slope stability using the Rock Mass Rating(RMR) system,” the Australian Institute of Mining and Metallurgy ,Vol. 2, pp. 25-29.
Robertson A. M., Estimating weak rock strength. AIME - SME ,Annual meeting. Phoenix, AZ., preprint No 88-145, AIME-SME. (1988).
Romana M. R., 1985. “New adjustment rating for application of the Bieniawski classification to slopes,” Proc.Int. Symp. Rock Mechanics Mining Civ. Works, ISRM, Zacatecas, Mexico, pp 59-63.
Romana M. R., 1993. “A Geomechanical Classification for Slope :Slope Mass Rating,” Comprehensive Rock Engineering, Vol. 3, pp. 575-599.
Selby, M. J., 1980. “A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand,” Zeitschrift for Geomorphologie, Vol. 24, No.1, pp. 31-51.
Selby, M. J., 1993. Hillslope Materials and Processes, Oxford University Press, Oxford, UK, pp. 451.
Serafim, J. L., and Pereira, J. P., 1983. “Consideration of the Geomechanics Classification of Bieniawski,” Proc. Intnl. Symp. Engng. Geol. And Underground Construction, Lisbon, Portugal, pp. 1133-44.
Sonmez, H., and Ulusay, R., 1999. “Modifications to the geological strength index (GSI) and their applicability to stability of slopes,” International Journal of Rock Mechanics and Mining Sciences, Vol. 36, pp. 743–760.
Jonny Sjoberg., 1996. “Analysis of large scale rock slope,” Ph.D, Department of Civil and Mining Engineering, Lulea University of Techonlogy .
Zekai Sen., Bahaaeldin H. Sadagah., 2003. “Modified rock mass classification system by continuous rating.” Engineering Geology, Vol. 67, 269–280.