跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李春明
Chun-Ming Lee
論文名稱: 以岩體分類探討非構造性控制破壞之
Stability of rock slope with non-structural control failures
指導教授: 董家鈞
Jia-Jyun Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 92
語文別: 中文
論文頁數: 118
中文關鍵詞: 邊坡反應曲線邊坡穩定分析地質強度指標岩體分類法最陡安全開挖坡度岩石邊坡
外文關鍵詞: slope performance curves, slope stability, Geological Strength Index, rock mass classification, maximum excavation angle, rock slope
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉以岩體分類的觀點,探討非構造性控制破壞下岩坡之最陡安全開挖坡度。基於地質強度指標GSI,結合非線性之Hoek and Brown (2002)破壞準則以及線性之摩爾-庫倫破壞準則,以迴歸獲得不同坡高應力範圍下之岩體強度參數c''與 ;再利用Janbu邊坡穩定分析設計圖,反推不同坡高與不同岩體強度下,安全係數(FS)為1時的岩坡開挖坡度,並將其計算結果展繪為邊坡反應曲線Slope performance curve。
    研究結果顯示:(1)不同坡高所造成之應力範圍,會直接影響岩體強度參數的評估,因此在評估岩坡穩定坡度時所使用之強度參數,應將坡高或應力條件納入考慮;(2)岩坡的岩石單壓強度,為非構造控制破壞之最陡安全開挖坡度中較為重要影響因素,相對而言,岩性係數顯得不那麼敏感;(3)岩坡之開挖施工擾動會直接影響岩體強度,尤其當岩體構造GSI評值不大時,岩體強度更會明顯降低;(4)依不同岩石強度與岩性展繪之GSI Slope performance curve可用來合理且簡易的評估岩坡最陡安全開挖坡度。


    Stability of rock slope with non-structural control failures is studied in this thesis. Based on Non-linear Hoek-Brown failure criterion (2002), cohesion c'' and frictional angle of the rock slope for different height (different stress range) are determined in conjunction with Geological Strength Index GSI. The maximum excavation angle (FS=1) with non-structural control failures of rock slope for different height can be evaluated using Janbu slope-stability chart. Consequently, GSI-based slope performance curves are constructed.
    The important results are summarized as follows: (1) Rock mass strength parameters are functions of stress range. Therefore, the height of rock slope should be taken into consideration for evaluating the maximum excavation angle. (2) Unconfined compressive strength of intact rock is a primary factor for evaluation of the maximum excavation angle with non-structural control failures. Relatively, the effect of material constant on the maximum excavation angle is minor. (3) Disturbance of excavation reduces the rock mass strength. The lower the GSI is the effect is more predominant. (4) GSI-based slope performance curves, taking the intact rock strength and material constants into consideration, are useful for evaluation the maximum excavation angle of rock slope.

    目 錄 內 容 頁次 中文摘要 Ⅰ 英文摘要 Ⅱ 致 謝 Ⅲ 目 錄 Ⅳ 表 目 錄 Ⅵ 圖 目 錄 Ⅶ 第一章 緒論 1 1.1 岩坡最陡安全開挖坡度的重要性 1 1.2 岩坡破壞模式與岩坡穩定性評估之方法 1 1.3 岩坡最陡安全開挖坡度與岩體分類法 2 1.4 論文架構 3 第二章 文獻回顧 5 2.1岩坡構造性與非構造性控制破壞 5 2.2岩體分類法與非構造性控制岩坡最陡安全開挖坡度 5 2.2.1 RMR及RMS岩體分類系統與穩定開挖坡度 6 2.2.2 MRMR system 11 2.2.3 SSPC system 14 2.3小結與問題描述 15 第三章 非構造性控制破壞之岩坡最陡安全開挖坡度 16 3.1非構造控制破壞機制 16 3.2非構造控制破壞之岩坡最陡安全開挖坡度之研究方法 16 3.3以岩體分類評估岩坡之岩體強度 18 3.3.1 RMR與岩體強度參數 18 3.3.2 GSI與岩體強度參數 19 3.3.3 Hoek and Brown破壞準則 21 3.4非構造控制之岩坡穩定分析與最陡安全開挖坡度 36 3.4.1利用RMR評值推求Slope performance curve 36 3.4.2利用GSI分類法推求Slope performance curve 38 第四章 案例驗證 44 4.1案例來源說明 44 4.2引用自Sjoberg (1996)之案例 44 4.2.1穩定且高大之自然邊坡 44 4.2.2穩定且高大之露天礦場邊坡 46 4.2.3非構造性破壞之露天礦場邊坡 48 4.3引用Moon等人(2001)之論文案例 49 4.4區別構造性控制破壞之最陡安全開挖坡度 51 第五章 結論與建議 52 5.1結論 52 5.2建議 53 參考文獻 55 附錄A 擾動係數(D=0)之岩體強度 59 附錄B 擾動係數(D=1)之岩體強度 71 附錄C 擾動係數(D=0)之GSI slope performance curve 83 表目錄 表 別 說 明 頁次 表2.1 Laubscher (1977) MRMR評值與最陡開挖安全坡度 11 表3.1 5組RMR評值所對應之岩體強度 36 表3.2 ISRM岩石單壓強度依 39 表3.3 分析變數一覽表 39 圖目錄 圖 別 說 明 頁次 圖1.1 論文架構 4 圖2.1 Laubscher (1975) RMR評值與岩坡最陡開挖安全坡度 6 圖2.2 Hall (1985) RMR評值與最陡開挖安全坡度 7 圖2.3 Selby (1980) RMS值評值與長期穩定坡度 8 圖2.4 RMS評值轉換RMR評值與自然邊坡長期穩定坡度 9 圖2.5 Orr (1992) RMR評值與長期穩定最陡開挖坡度 10 圖2.6 RMR及RMS與穩定坡度之迴歸分析研究結果 11 圖2.7(a) Haines and Terbrugge (1991)展繪MRMR Slope performance curve 12 圖2.7(b) Duran and Douglas (1999)展繪MRMR Slope performance curve 13 圖2.8 SSPC非構造性破壞之穩定程度百分比 14 圖3.1 Janbu邊坡穩定分析設計圖 17 圖3.2 研究方法示意圖 .17 圖3.3(a) RMR評值與岩體c值之關係 19 圖3.3(b) RMR評值與岩體φ值之關係 19 圖3.4 Geological Strength Index 20 圖3.5 完整岩石之岩性係數 24 圖3.6 Hoek and Brown (1995)破壞準則強度參數 與凝聚力之關係 24 圖3.7 Hoek and Brown (1995)破壞準則強度參數 與摩擦角之關係 27 圖3.8 Hoek and Brown (2002)破壞準則強度參數 與凝聚力之關係 27 圖3.9 Hoek and Brown (2002)破壞準則強度參數 與摩擦角之關係 26 圖3.10 D=0,應力範圍於 H/ =1/3之凝聚力 30圖3.11 D=0,應力範圍於 H/ =1/3之摩擦角 30 圖3.12 D=0,應力範圍於 H/ =100之凝聚力 31 圖3.13 D=0,應力範圍於 H/ =100之摩擦角 31 圖3.14 D=0,應力範圍於 H/ =0.01之凝聚力 32 圖3.15 D=0,應力範圍於 H/ =0.01之摩擦角 32 圖3.16 兩種不同開炸方式差異對岩坡受擾度程度影響 33 圖3.17 D=0,之應力範圍於 H/r=1之凝聚力 34 圖3.18 D=0,之應力範圍於 H/r=1之摩擦角 34 圖3.19 D=1,之應力範圍於 H/r=1之凝聚力 35 圖3.20 D=1,之應力範圍於 H/r=1之摩擦角 35 圖3.21 RMR之Slope performance curve. 37 圖3.22 RMR評值與穩定坡高坡度. 37 圖3.23 mi=7,岩石單壓強度為R1 41 圖3.24 mi=7,岩石單壓強度為R5 41 圖3.25 mi=16,岩石單壓強度為R1 42 圖3.26 mi=16,岩石單壓強度為R5 42 圖3.27 mi=30,岩石單壓強度為R1 43 圖3.28 mi=30,岩石單壓強度為R5 43 圖4.1 案例岩性為雲母片岩,岩石單壓強度為R4 45 圖4.2 案例岩性為輝長岩,岩石單壓強度為R4 45 圖4.3 案例岩性為花崗片麻岩,岩石單壓強度為R4 46 圖4.4 案例岩性為石英岩,岩石單壓強度為R5 47 圖4.5 案例岩性為板岩,岩石單壓強度為R3 48 圖4.6 案例岩性為粉砂岩或泥岩,岩石單壓強度為R1 49 圖4.7 案例岩性為泥岩與粉砂岩,岩石單壓強度為R2 50

    參考文獻
    Bieniawski, Z. T., 1973. “Engineering classification of jointed rock masses,” Trans. S. Afr. Inst. Civ. Eng, Vol. 15, pp. 355-344.
    Bieniawski, Z. T., 1976. “Rock mass classification in rock engineering,” In Proc. Symp. Exploration for Rock Eng, Vol. 1, pp. 97-106.
    Bieniawski, Z. T., 1989. Engineering Rock Mass Classification, Wiley, New York.
    Barton, N. R., and Choubey, V., 1977. “The shear strength of rock joints in theory and practice,” Rock Mech, 10(1-2), pp. 1-54.
    Duran, A., and Douglas, K., 1999. “Do slopes designed with empirical rock mass strength criteria stand up?” 9th ISRM International Congress on Rock Mechanics, Paris, France, Vol. 1, pp. 87-90.
    Hall, B. E., 1985. “Preliminary estimation of slope angle,” Symp.on Rock Mass Characteristics, pp. 12-21.
    Hoek E., and Bray J. W., 1981. Rock Slope Engineering, 3nd ed., The Institution of Mining and Metallurgy.
    Hoek, E., Kaiser, P. K., and Bawden. W. F., 1995. Support of underground excavations in hard rock, Rotterdam: Balkema.
    Hoek E., Read J., Karzulovic A., and Chen Z. Y., 2000. “Rock slopes in civil and mining engineering, ” Proc.GeoEng, Melbourne. cd-rom.
    Hoek E., and Brown, E. T., 1997. “Practical estimates of rock mass strength,” Intnl. J. Rock Mech. & Mining Sci. & Geomechanics Abstracts,Vol. 34, No. 8, pp. 1165-1186.
    Hoek, E., Torres, C. T., and Corkum, B., 2002. “Hoek-Brown failure criterion:2002 edition,” Proceedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, 1-6..
    Haines A., and Terbrugge P. J., 1991. “Preliminary estimation of rock slope stability using rock mass classification systems,” Proc. 7th Cong. on Rock Mechanics, ISRM, Aachen, Germany. 2.ed. Wittke W. publ. Balkema, Rotterdam, pp. 887-892.
    Hack, H. R. G. K., 1998. “Slope Stability Probability Classification,” ITC Delft Publication, Vol. 43, Enschede, Netherlands, pp. 273.
    Hougton, D. A., 1976. “The role of rock quality indices in the assessment of rock masses,” Proc. Symp. Expl. Rock Eng., Johannesburg, Balkema, Cape Town, Vol. 1, pp. 129–135.
    ISRM, 1981. Rock Characterization, Testing and Monitoring, ISRM suggested methods. ed. E.T. Brown.publ. Pergamon Press, Oxford, pp. 211.
    Janbu, N., 1973. Slope stability computation. In: Hirsch.eld, R.C., Paulos, S.J. (Eds.), Embankment Dam Engineering: Casagrande Memorial Volume. Wiley, New York, pp. 47–87.
    Laubscher, D. H., 1975. “Class Distinction in Rock Masses,” Coal, Gold and Base Minerals of Southern Africa, pp. 37-50.
    Laubscher, D. H., 1977. “Geomechanics classification of jointed rock masses mining applications,” Trans. Instn. Min. Metall, Vol. 86, A1-8.
    Laubscher D. H., 1990. “A geomechanics classification system for the rating of rock mass in mine design,” Journal South African Institution Mining and Metallurgy, Vol. 90, pp. 257–73.
    Lindsay P., Campbell R. N., Fergusson D. A., Gillard G. R., and Moore T. A., 2001. “The slope stability probability classification, Waikato Coal Measures, New Zealand,” International Journal of Coal Geology, Vol. 45, pp. 127-145.
    Moon, B. P., Selby, M.J. 1983. “Rock Mass Strength and Scarp Forms,” Southern Africa, Geografisika annaler.
    Moon, V. G., Russell, G., and Stewart, M., 2001. “The value of rock mass classification systems for weak rock masses: a case example from Huntly, New Zealand,” Engineering Geology, Vol. 61., pp. 53-67.
    Norrish N. I., and Wyllie D.C., 1996. “Rock slope stability analysis,” Landslide, investigation and mitigation, Turner and Schuster eds., Transportation Research Board Special Report 247.
    Orr, C. M., 1992. “Assessment of rock slope stability using the Rock Mass Rating(RMR) system,” the Australian Institute of Mining and Metallurgy ,Vol. 2, pp. 25-29.
    Robertson A. M., Estimating weak rock strength. AIME - SME ,Annual meeting. Phoenix, AZ., preprint No 88-145, AIME-SME. (1988).
    Romana M. R., 1985. “New adjustment rating for application of the Bieniawski classification to slopes,” Proc.Int. Symp. Rock Mechanics Mining Civ. Works, ISRM, Zacatecas, Mexico, pp 59-63.
    Romana M. R., 1993. “A Geomechanical Classification for Slope :Slope Mass Rating,” Comprehensive Rock Engineering, Vol. 3, pp. 575-599.
    Selby, M. J., 1980. “A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand,” Zeitschrift for Geomorphologie, Vol. 24, No.1, pp. 31-51.
    Selby, M. J., 1993. Hillslope Materials and Processes, Oxford University Press, Oxford, UK, pp. 451.
    Serafim, J. L., and Pereira, J. P., 1983. “Consideration of the Geomechanics Classification of Bieniawski,” Proc. Intnl. Symp. Engng. Geol. And Underground Construction, Lisbon, Portugal, pp. 1133-44.
    Sonmez, H., and Ulusay, R., 1999. “Modifications to the geological strength index (GSI) and their applicability to stability of slopes,” International Journal of Rock Mechanics and Mining Sciences, Vol. 36, pp. 743–760.
    Jonny Sjoberg., 1996. “Analysis of large scale rock slope,” Ph.D, Department of Civil and Mining Engineering, Lulea University of Techonlogy .
    Zekai Sen., Bahaaeldin H. Sadagah., 2003. “Modified rock mass classification system by continuous rating.” Engineering Geology, Vol. 67, 269–280.

    QR CODE
    :::