跳到主要內容

簡易檢索 / 詳目顯示

研究生: 古佳文
Jia-Wen Gu
論文名稱: 用於雷射驅動高階諧波研究之頻域干涉儀的發展
Development of the Frequency-Domain Interferometry for the Research of Laser-Driven High-Order Harmonic Generation
指導教授: 朱旭新
Hsu-hsin Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 75
中文關鍵詞: 高階諧波產生電漿波導頻域干涉儀縱向診斷
外文關鍵詞: high-order harmonic generation, plasma, waveguide, frequency-domain interferometry, longitudinal diagnosis
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高階諧波產生研究中,相位匹配佔有很重要的地位。實現相位匹配需要對實驗條件進行精確的測量與控制,特別是測量由超短雷射脈衝所產生的電漿密度。本論文聚焦在發展頻域干涉技術來測量毛細管光波導內的電漿密度。基於此技術,我們成功診斷了高階諧波產生過程中所生成的瞬態電漿。這些結果有助於實現高階諧波產生的相位匹配,進而提升短波長輸出的效率。


    In high-harmonic generation research, phase matching plays a crucial role. Achieving phase matching requires precise characterization and careful control of experimental con-
    ditions, particularly in measuring the plasma density produced by ultrashort laser pulses. This thesis focuses on the development of the frequency-domain interferometry for the measurement of the plasma density in a capillary waveguide. Based on this technique, we successfully diagnose the transient state of the plasma generated in the high-harmonic generation process. These results are beneficial for achieving phase matching of higher-harmonic generation, leading to efficient output at shorter wavelengths.

    摘要 ix Abstract xi Contents xiii List of Figures xv List of Tables xvii Abbreviation Table xix 1 Introduction 1 1.1 Three-Step Model ............................................................. 2 1.2 Phase-Mismatch in High-order Harmonic Generation........................ 3 1.2.1 Wavenumber Mismatch due to Neutral Gas Dispersion .............. 5 1.2.2 Wavenumber Mismatch due to Plasma Dispersion ................... 6 1.2.3 Phase Mismatch due to Intrinsic Dipole Phase ....................... 6 1.2.4 Phase Mismatch due to Geometrical Phase Shift..................... 7 1.2.5 HHG with Gas-Filled Waveguide...................................... 8 1.3 Longitudinal Diagnosis........................................................ 9 2 Frequency-Domain Interferometry (FDI) 11 2.1 Principle....................................................................... 11 3 Method 17 3.1 Experimental Setup ........................................................... 17 3.1.1 Capillary ............................................................... 17 3.1.2 Driving Beam .......................................................... 18 3.1.3 Probe Beam............................................................ 19 3.1.4 Diagnostic System ..................................................... 24 3.2 FDI Parameter Design ........................................................ 27 3.2.1 Polarization ............................................................ 27 3.2.2 Pulse Duration......................................................... 27 3.2.3 Delay................................................................... 27 3.2.4 Environment ........................................................... 28 3.3 Temporal Alignment .......................................................... 28 3.3.1 Coarse Tuning ......................................................... 28 3.3.2 Fine Tuning with Frequency-Domain Interferometry ................. 29 3.3.3 Fine Tuning with Sum-Frequency Generation ........................ 29 4 Result 33 4.1 Phase and Group Delay Retrieval Process ................................... 33 4.2 Validity of FDI ................................................................ 35 4.2.1 Relationship between Spectral Modulation and Delay................ 35 4.2.2 Phase Measurement ................................................... 36 4.3 Guiding Quality of the Driving Beam ........................................ 40 4.4 Plasma Diagnostics Inside the Capillary ..................................... 43 4.4.1 Plasma Diagnostics with Argon ....................................... 46 4.5 Measurement of High-Density Plasma........................................ 48 5 Discussion and Conclusion 51 5.1 Discussion ..................................................................... 51 5.1.1 Extinction Ratio and Interference between the Driving Beam and the Probe Beam ............................................................... 51 5.1.2 Probe Beam Ionize Gas ............................................... 51 5.2 Conclusion..................................................................... 52 參考文獻 53

    [1] W. P. Leemans et al., “GeV electron beams from a centimetre-scale accelerator,” Nature
    Physics, vol. 2, no. 10, pp. 696–699, Oct. 2006, issn: 1745-2473, 1745-2481. doi: 10.
    1038/nphys418. Accessed: Nov. 18, 2024. [Online]. Available: https://www.nature.com/
    articles/nphys418.
    [2] T. Mocek et al., “Dramatic enhancement of xuv laser output using a multimode gas-filled
    capillary waveguide,” Physical Review A, vol. 71, no. 1, p. 013 804, Jan. 7, 2005, issn:
    1050-2947, 1094-1622. doi: 10.1103/PhysRevA.71.013804. Accessed: Nov. 18, 2024.
    [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.71.013804.
    [3] E. A. Gibson et al., “High-order harmonic generation up to 250 eV from highly ionized
    argon,” Physical Review Letters, vol. 92, no. 3, p. 033 001, Jan. 21, 2004, issn: 0031-9007,
    1079-7114. doi: 10.1103/PhysRevLett.92.033001. Accessed: Nov. 18, 2024. [Online].
    Available: https://link.aps.org/doi/10.1103/PhysRevLett.92.033001.
    [4] Y.-L. Liu, J. Wang, and H.-h. Chu, “Ion-based high-order harmonic generation from water
    window to keV region with a transverse disruptive pulse for quasi-phase-matching,” Optics
    Express, vol. 30, no. 2, pp. 1365–1380, Jan. 17, 2022, Publisher: Optica Publishing Group,
    issn: 1094-4087. doi: 10.1364/OE.447796. Accessed: Nov. 18, 2024. [Online]. Available:
    https://opg.optica.org/oe/abstract.cfm?uri=oe-30-2-1365.
    [5] Y. Tamaki, J. Itatani, Y. Nagata, M. Obara, and K. Midorikawa, “Highly efficient, phase-
    matched high-harmonic generation by a self-guided laser beam,” Physical Review Letters,
    vol. 82, no. 7, pp. 1422–1425, Feb. 15, 1999, issn: 0031-9007, 1079-7114. doi: 10.1103/
    PhysRevLett.82.1422. Accessed: Oct. 24, 2024. [Online]. Available: https://link.aps.
    org/doi/10.1103/PhysRevLett.82.1422.
    [6] A. Pirati et al., “EUV lithography performance for manufacturing: Status and outlook,”
    presented at the SPIE Advanced Lithography, E. M. Panning and K. A. Goldberg, Eds.,
    San Jose, California, United States, Mar. 18, 2016, 97760A. doi: 10.1117/12.2220423.
    Accessed: Dec. 18, 2024. [Online]. Available: http://proceedings.spiedigitallibrary.
    org/proceeding.aspx?doi=10.1117/12.2220423.
    [7] S. Heinrich et al., “Attosecond intra-valence band dynamics and resonant-photoemission
    delays in w(110),” Nature Communications, vol. 12, no. 1, p. 3404, Jun. 7, 2021, Publisher:
    Nature Publishing Group, issn: 2041-1723. doi: 10.1038/s41467-021-23650-7. Ac-
    cessed: Jul. 11, 2024. [Online]. Available: https://www.nature.com/articles/s41467-
    021-23650-7.
    [8] J. Li et al., “Attosecond science based on high harmonic generation from gases and solids,”
    Nature Communications, vol. 11, no. 1, p. 2748, Jun. 2, 2020, issn: 2041-1723. doi: 10.
    1038/s41467-020-16480-6. Accessed: Dec. 18, 2024. [Online]. Available: https://www.
    nature.com/articles/s41467-020-16480-6.
    [9] Y.-L. Liu, S.-C. Kao, Y.-Y. Ou Yang, Z.-M. Zhang, J. Wang, and H.-h. Chu, “Tomographic
    analysis of high-order harmonic generation by integrating a phase-matching profile mea-
    surement with disruptive interaction-length control,” Physical Review A, vol. 104, no. 2,
    p. 023 112, Aug. 26, 2021, issn: 2469-9926, 2469-9934. doi: 10.1103/PhysRevA.104.
    023112. Accessed: Dec. 18, 2024. [Online]. Available: https://link.aps.org/doi/10.
    1103/PhysRevA.104.023112.
    [10] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” in Selected Papers
    of Leonid V Keldysh. WORLD SCIENTIFIC, Nov. 2023, pp. 56–63, isbn: 9789811279454
    9789811279461. doi: 10.1142/9789811279461_0008. Accessed: Jul. 11, 2024. [Online].
    Available: https://www.worldscientific.com/doi/10.1142/9789811279461_0008.
    [11] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long
    distance optical transmission and lasers,” Bell System Technical Journal, vol. 43, no. 4,
    pp. 1783–1809, Jul. 1964, issn: 00058580. doi: 10.1002/j.1538-7305.1964.tb04108.x.
    Accessed: Jul. 28, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/
    6773550.
    [12] C. Froehly, A. Lacourt, and J. C. Viénot, “Time impulse response and time frequency
    response of optical pupils.:experimental confirmations and applications,” Nouvelle Revue
    d’Optique, vol. 4, no. 4, pp. 183–196, Jul. 1973, issn: 0335-7368. doi: 10.1088/0335-
    7368/4/4/301. Accessed: Jun. 15, 2024. [Online]. Available: https://iopscience.iop.
    org/article/10.1088/0335-7368/4/4/301.
    [13] E. Tokunaga, A. Terasaki, and T. Kobayashi, “Frequency-domain interferometer for fem-
    tosecond time-resolved phase spectroscopy,” Optics Letters, vol. 17, no. 16, pp. 1131–1133,
    Aug. 15, 1992, Publisher: Optica Publishing Group, issn: 1539-4794. doi: 10.1364/OL.
    17.001131. Accessed: Jun. 10, 2024. [Online]. Available: https://opg.optica.org/ol/
    abstract.cfm?uri=ol-17-16-1131.
    [14] R. R. Tamming, J. M. Hodgkiss, and K. Chen, “Frequency domain interferometry for
    measuring ultrafast refractive index modulation and surface deformation,” Advances in
    Physics: X, vol. 7, no. 1, p. 2 065 218, Dec. 31, 2022, Publisher: Taylor & Francis _eprint:
    https://doi.org/10.1080/23746149.2022.2065218, issn: null. doi: 10.1080/23746149.
    2022.2065218. Accessed: Jun. 15, 2024. [Online]. Available: https://doi.org/10.1080/
    23746149.2022.2065218.
    [15] J. van Tilborg, A. J. Gonsalves, E. Esarey, C. B. Schroeder, and W. P. Leemans, “High-
    sensitivity plasma density retrieval in a common-path second-harmonic interferometer
    through simultaneous group and phase velocity measurement,” Physics of Plasmas, vol. 26,
    no. 2, p. 023 106, Feb. 13, 2019, issn: 1070-664X. doi: 10.1063/1.5080269. Accessed:
    Jun. 15, 2024. [Online]. Available: https://doi.org/10.1063/1.5080269.
    [16] M. V. Ammosov and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic
    ions in an alternating electromagnetic field,”
    [17] G. D. Tsibidis and E. Stratakis, “Ionization dynamics and damage conditions in fused
    silica irradiated with mid-infrared femtosecond pulses,” Applied Physics Letters, vol. 122,
    no. 4, p. 043 501, Jan. 23, 2023, issn: 0003-6951, 1077-3118. doi: 10.1063/5.0130934.
    Accessed: Dec. 31, 2024. [Online]. Available: https://pubs.aip.org/apl/article/122/
    4/043501/2870092/Ionization-dynamics-and-damage-conditions-in-fused.

    QR CODE
    :::