跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林蓓憶
Pei-Yi Lin
論文名稱: 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究
Thermal crystallization behavior of hydrogenated amorphous silicon grown by electron cyclotron resonance chemical vapor deposition
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 固態結晶法電子迴旋共振化學氣相沉積氫化非晶矽薄膜
外文關鍵詞: solid phase crystallization, ECRCVD, a-Si:H
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   以電子迴旋共振化學氣相沉積 (electron cyclotron resonance chemical vapor deposition, ECRCVD)成長a-Si:H薄膜,具有低溫成膜性質及沉積速率較快等優勢,將有效降低製作元件成本。然而,a-Si:H薄膜為矽氫所組成,其結構相對於結晶矽鬆散,且矽氫鍵結斷裂形成缺陷,易發生光衰退效應,當a-Si:H薄膜結構有序性增加,對於光照衰退有較佳之抵抗能力、缺陷密度降低及載子移動率增加,故使薄膜結構有序性增加有氫氣稀釋法(hydrogen dilution method)直接成長為微晶結構及退火熱處理法(thermal annealing method)促使非晶相形成結晶相薄膜等方式,以提升薄膜太陽能電池之效率。
      本研究將針對以ECRCVD成長之a-Si:H薄膜,利用管型爐進行熱退火處理,並由Raman、XRD、SEM、TEM及XPS儀器分析並觀察晶相、晶粒大小與方向、微結構及Si原子鍵結形態。探討熱處理之薄膜結晶化過程,發現結晶時間隨溫度上升而減少,進而控制退火溫度與時間以獲得薄膜之不同結晶率與晶粒尺寸,由實驗結果得知,ECRCVD薄膜之結晶率可達至~80 %,晶粒大小約為~17 nm。
      利用固態結晶法(solid phase crystallization, SPC)機制,描述晶粒成核與成長情況,並以熱力學模型得出結晶率與退火時間關係,探討a-Si:H薄膜熱處理結晶化過程,其包含四種步驟:薄膜之incubation、晶粒成核、晶粒成長及完全結晶,發現結晶時間隨溫度上升而減少。由成核成長理論分別求得熱力學參數,其薄膜之incubation time 活化能為3.51 0.09 eV;成長速率活化能為2.54 0.13 eV。此外,將a-Si:H薄膜置於氧氣氛中加熱,由於Si懸鍵與O原子易產生鍵結反應,並觀察退火溫度與時間對a-Si:H薄膜之氧化程度,探討a-Si:H薄膜結晶率之提升效應與氧化機制。


    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited on pre-oxidized Si wafers at low-temperature by electron cyclotron resonance chemical vapor deposition (ECRCVD). The furnace annealing treatment by solid-phase crystallization (SPC) method were applied to the as-grown films in nitrogen or oxygen atmosphere, and the temperature range for variable times was from 612℃ to 675℃.
    The crystallization and grain growth behaviors of the annealed films were investigated by Raman spectroscopy and X-ray diffraction (XRD). The crystalline fraction of annealed films can reach ~ 80% , and a grain size up to 17 nm could be obtained from the FA treatment at high temperature. The surface morphologies and microstructure of annealed films were observed by scanning electron microscope (SEM) and transmission electron microscope (TEM).
    The evolution of crystallization with nucleation and grain growth process for annealed films was described by classical thermal kinetics. The activation energy of ECRCVD film in incubation time and grain growth were 3.51 0.09 eV and 2.54 0.13 eV, respectively. Moreover, the a-Si:H films were oxidized at lower temperature in oxygen atmosphere. The chemical states of silicon of thermal oxidized films were investigated for by X-ray photoelectron spectroscopy (XPS). The degree of oxidation for annealed films was dependent on annealing temperature and time. The crystalline fraction of annealed films in oxygen atmosphere was higher than in nitrogen atmosphere due to the amorphous phase was oxidized in Raman spectra.

    目錄 中文摘要 i 英文摘要 iii 誌謝 iv 目錄 vi 圖目錄 ix 表目錄 xiv 第一章 前言 1 第二章 文獻回顧與理論背景 4 2.1 薄膜太陽能電池發展概況 4 2.2 氫化非晶矽薄膜之特性 7 2.2.1 氫化非晶矽薄膜之製備 7 2.2.2 氫化非晶矽薄膜之結構 8 2.2.3 氫化非晶矽薄膜之矽氫鍵結 9 2.2.4 氫化非晶矽薄膜之光電特性 11 2.3 氫化非晶矽薄膜之結晶化 15 2.3.1 氫化非晶矽薄膜之熱處理方法 15 2.3.1.1 高溫管型爐退火法(FA) 16 2.3.1.2 快速熱退火法(RTA) 17 2.3.1.3 準分子雷射退火法(ELA) 18 2.3.2 成核與成長動力學之理論 19 2.3.2.1 成核與成長之熱動力學參數 20 2.3.2.2 瞬時成核時間 22 2.3.2.3 成核速率與成長速率 22 2.3.3 氫化非晶矽薄膜結晶化 24 2.3.3.1 退火溫度與時間關係 24 2.3.3.2 薄膜沉積方式對結晶化影響 25 2.3.3.3薄膜沉積速率對結晶化影響 27 2.3.3.4 氫含量多寡與分佈對結晶化影響 28 第三章 實驗步驟 30 3.1 製備氫化非晶矽薄膜 30 3.2 熱處理氫化非晶矽薄膜 31 3.3 熱處理前後之薄膜特性分析 34 3.3.1 拉曼光譜儀 (Raman spectroscopy) 34 3.3.2 X光繞射儀 (X-ray diffraction, XRD) 34 3.3.3 光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 36 3.3.4 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 36 3.3.5 穿透式電子顯微鏡 (Transmission electron microscope, TEM) 36 第四章 結果與討論 37 4.1 氫化非晶矽薄膜之結晶化行為 37 4.1.1 薄膜晶相轉變 37 4.1.2 薄膜結晶方向與大小 40 4.1.3 薄膜形貌與結構 43 4.1.4 薄膜熱力學行為探討 47 4.1.4.1 結晶率變化     47 4.1.4.2 成核與成長速率 49 4.1.4.3 薄膜結晶化之熱力學參數比較 51 4.2 氧氣氛對薄膜結晶化影響 53 4.2.1 薄膜結晶率變化 53 4.2.2 以XPS分析薄膜之矽鍵結 54 4.2.2.1 退火溫度對薄膜氧化深度影響 55 4.2.2.2 退火時間對薄膜氧化程度影響 58 第五章 結論 60 參考文獻 62

    參考文獻
    [1] J. J. Loferski, J. Appl. Phys. 27, 777 (1956).
    [2] M. A. Green, Prog. Photovoltaics 9, 123 (2001).
    [3] National Renewable Energy Laboratory, NREL.
    [4] H. F. Sterling and R. G. C. Swann, Solid-State Electron. 8, 653 (1965).
    [5] R. C. Chittick, J. H. Alexander, and H. F. Sterling, J. Electrochem, Soc. 116, 77 (1969).
    [6] A. Triska, D. Denison, and H. Fritzsche, Bull. Am. Phys. Soc. 20, 392 (1975).
    [7] R. A. Street, Hydrogenated amorphous silicon, p.18-20 (1991)
    [8] L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, and H. Wagner, Philos. Mag. A 77, 1447 (1998).
    [9] A. H. Mahan, Y. Xu, D. L. Williamson, W. Beyer, J. D. Perkins, M. Vanecek, L. M. Gedvilas, and B. P. Nelson, J. Appl. Phys. 90, 5038 (2001).
    [10] M. Pontoh, V. L. Dalal, N. Ganghi, Mat. Res. Soc. Symp. Proc. 715 A19.6.1 (2002).
    [11] R. Biswas, Q. Li, B. C. Pan, and Y. Yoon, Phys. Rev. B 57, 2253 (1998).
    [12] M. H. Brodsky, M. Cardona, and J. J. Cuomo, Phys. Rev. B 16, 3556 (1977).
    [13] U. Kroll, J. Meier, A. Shah, S. Mikhailov, and J. Weber, J. Appl. Phys. 80, 4971 (1996).
    [14] E. Bhattacharya and A. H. Mahan, Appl. Phys. Lett. 52, 1587 (1988).
    [15] C. Smit, R. A. C. M. M. van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kessels, and M. C. M. van de Sanden, J. Appl. Phys. 94, 3582 (2003).
    [16] G. Yue, J. D. Lorentzen, J. Lin, D. Han, and Q. Wang, Appl. Phys. Lett. 75, 492 (1999).
    [17] J. Tauc, Optical Properties of Solids, F. Abeles(Ed.), North Holland (1972).
    [18] R. E. I. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer Academic, Boston, 1998).
    [19] D. V. Lang, J. D. Cohen, and J. P. Harbison, Phys. Rev. B 25, 5285 (1982).
    [20] C. E. Michelson, A. V. Gelatos, and J. D. Cohen, Appl. Phys. Lett. 47, 412 (1985).
    [21] G. Moddel, D. A. Anderson, and W. Paul, Phys. Rev. B 22, 1918 (1980).
    [22] W. B. Jackson and N. M. Amer, Phys. Rev. B 25, 5559 (1982).
    [23] D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31, 292 (1997).
    [24] K. Nakazawa and K. Tanaka, J. Appl. Phys. 68, 1029 (1990).
    [25] S. Honda, A. Fejfar, J. Kočka, A. Ogane, Y. Uraoka and T. Fuyuki, J. Non-Cryst. Solids 352, 955 (2006).
    [26] Chang Woo Lee, Choochon Lee,and Yong Tae Kim, Appl. Phys. A 56, 123 (1993)
    [27] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano, and Y. Kuwano, Jpn. J. Appl. Phys. 30, 3700 (1991).
    [28] P. Lengsfeld, N. H. Nickel, and W. Fuhs, Appl. Phys. Lett. 76, 1680 (2000).
    [29] R. B. Iverson and R. Reif, J. Appl. Phys. 62, 1675 (1987).
    [30] Y. Masaki, P. G. LeComber, and A. G. Fitzgerald, J. Appl. Phys. 74, 129 (1993).
    [31] J. Robertson, J. Appl. Phys. 93, 731 (2003).
    [32] H. Wakeshima, J. Chem. Phys. 22, 1614 (1954).
    [33] F. C. Collins, Z. Elektrochem. 59, 404 (1955).
    [34] J. Feder, K. C. Russell, J. Lothe, and G. M. Pound, Adv. Phys. 15, 111 (1966).
    [35] B. K. Chakraverty, Surf. Sci. 4, 205 (1966).
    [36] D. Kashchiev, Surf. Sci. 14, 209 (1969).
    [37] K. F. Kelton, A. L. Greer, and C. V. Thompson, J. Chem. Phys. 79, 6261 (1983).
    [38] C. Song, G.R. Chen, J. Xu, T. Wang, H.C. Sun, Y. Liu, W. Li, Z.Y. Ma, L. Xu, X.F. Huang and K.J. Chen, J. Appl. Phys. 105, 054901 (2009).
    [39] A.H. Mahan, S.P. Ahrenkiel, R.E.I. Schropp, H. Li and D.S. Ginley, Thin Solid Films 516, 529 (2008).
    [40] D. L. Young, D. L. Williamson, P. Stradins, Y. Xu, L. Gedvilas, A. H. Mahan, H. Branz, and Q. Wang, Appl. Phys. Lett. 89, 161910 (2006).
    [41] D.L. Young, P. Stradins, Y. Xu, L.M. Gedvilas, E. Iwaniczko, Y. Yan, H.M. Branz and Q. Wang, Appl. Phys. Lett. 90, 081923 (2007).
    [42] A. H. Mahan, B. Roy, Jr., R. C. Reedy, D. W. Readey, and D. S. Ginley, J. Appl. Phys. 99, 023507 (2006).
    [43] E. Bustarret, M. A. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).
    [44] Bernard Dennis Cullity, Stuart R. Stock, Elements of x-ray Diffraction (Prentice Hall, 2001).
    [45] E. Vallat-Sauvain, U. Kroll, J. Meier, A. Shah, and J. Pohl, J. Appl. Phys. 87, 3137 (2000).
    [46] I.-W. Wu, A. Chiang, M. Fuse, L. Ovecoglu, and T. Y. Huang, J. Appl. Phys. 65, 4036 (1989).
    [47] D. Das, J. Farjas, P. Roura, G. Viera, and E. Bertran, Appl. Phys. Lett. 79, 3705 (2001).
    [48] F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perriere, E. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B 37, 6468(1988).
    [49] S. Kohli, J. A. Theil, R. D. Snyder, C. D. Rithner, and P. K. Dorthoul, J. Vac. Sci. Technol. B 21, 719 (2003).

    QR CODE
    :::