| 研究生: |
程浚邑 Chun-Yi Cheng |
|---|---|
| 論文名稱: |
剛玉材料 Cr₁.₀₅V₀.₈₅O₃ 磁性與自旋-聲子交互作用之研究 Magnetism and Spin–Phonon Coupling in Cr₁.₀₅V₀.₈₅O₃ with Corundum Structure |
| 指導教授: |
楊仲準
Chun-Chuen,yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | CrVO3 、剛玉材料 、反鐵磁有序結構 、自旋-聲子交互作用 |
| 外文關鍵詞: | CrVO3, corundum material, Antiferromagnetic ordered structure, Spin-phonon interaction |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在研究剛玉類氧化物材料 Cr₁.₀₅V₀.₈₅O₃ 材料的磁性與內部自旋聲子交互作用之現象。透過X光粉末繞射、中子繞射、穿透式電子顯微鏡、X光吸收光譜、物理特性量測系統、拉曼光譜技術,詳細分析了該材料之晶體結構、磁性行為與自旋聲子交互作用。
研究結果顯示,Cr₁.₀₅V₀.₈₅O₃ 由3.5K到300K均為Hexagonal R-3c 結構,該區間內並未發生明顯的結構相變。同時中子繞射實驗顯示材料至3.5 K至300 K 呈現沿c軸的反鐵磁性,磁矩強度由1.23 μ_B/atom隨溫度上升而下降,到200 K 時的磁相變溫度材料內自旋排列發生轉變,磁矩大小降至0.50 μ_B/atom,該下降幅度經由 Bloch T3/2 law 擬合,以 10 K 至 85 K區間理論最大磁矩 M_0≈1.24(3) μ_B/atom 、T_C≈356.89 K, 90 K 至 200 K區間其理論最大磁矩 M_0≈1.33(5) μ_B/atom 、T_C≈285.4 K。
在4 K時呈現明顯的磁滯現象,50 K過後磁滯現象則隨溫度上升而更加不明顯,矯頑力與殘磁也都接近於零。
透過變溫拉曼、等溫變磁拉曼、變功率拉曼等實驗,搭配變溫中子繞射、磁化率實驗、磁滯曲線實驗可以計算晶格間自旋聲子耦合常數、單自旋之自旋聲子耦合常數,並觀察到在自旋有序變化間Raman Shift的變化。
這些特徵都表明了 Cr₁.₀₅V₀.₈₅O₃ 材料在磁相變溫度前後自旋聲子交互作用與磁性間的變化,顯示了該材料在磁性儲能、自旋聲子學、磁電效應等領域皆具有相當的潛力。
This study investigates the magnetic properties and spin–phonon interactions in the corundum-type oxide Cr₁.₀₅V₀.₈₅O₃. Using X-ray powder diffraction, neutron diffraction, TEM, X-ray absorption spectroscopy, PPMS, and Raman spectroscopy, we comprehensively analyzed its crystal structure, magnetic behavior, and spin–phonon coupling.
Results show that Cr₁.₀₅V₀.₈₅O₃ retains a hexagonal R-3c structure from 3.5 K to 300 K without structural phase transitions. Neutron diffraction reveals c-axis antiferromagnetic ordering throughout this range. The magnetic moment decreases from 1.23 μB/atom at low temperature to 0.53 μB/atom near 200 K, indicating a transition from long-range to short-range magnetic order. This trend follows the Bloch T³⁄² law with an exponent of 2 and an estimated TC≈260TC.
Magnetic hysteresis is evident at 4 K but vanishes above 50 K, with coercivity and remanence approaching zero. Temperature-dependent, field-dependent, and power-dependent Raman measurements—alongside neutron and magnetization data—enabled calculation of both inter-spin and single-spin spin–phonon coupling constants. A distinct Raman shift change is observed between long-range and short-range ordered states.
These findings demonstrate the evolving spin–phonon interaction and magnetism near the magnetic transition temperature, highlighting the potential of Cr₁.₀₅V₀.₈₅O₃ in magnetic energy storage, spin-phononics, and magnetoelectric applications.
[1] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., ... & Chazelas, J. (1988). Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices. Physical review letters, 61(21), 2472.
[2] Uchida, K. I., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., ... & Saitoh, E. (2008). Observation of the spin Seebeck effect. Nature, 455(7214), 778-781.
[3] Wang, Y., Zhu, D., Yang, Y., Lee, K., Mishra, R., Go, G., ... & Yang, H. (2019). Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science, 366(6469), 1125-1128.
[4] Li, J., Simensen, H. T., Reitz, D., Sun, Q., Yuan, W., Li, C., ... & Shi, J. (2020). Observation of magnon polarons in a uniaxial antiferromagnetic insulator. Physical review letters, 125(21), 217201.
[5] Zhang, Y. H., Chuang, T. C., Qu, D., & Huang, S. Y. (2022). Detection and manipulation of the antiferromagnetic Néel vector in Cr 2 O 3. Physical Review B, 105(9), 094442.
[6] J. de la Venta, S. Wang, T. Saerbeck, J. G. Ramírez, I. Valmianski, and I. K. Schuller, Coercivity enhancement in bilayers driven by nanoscale phase coexistence, Appl. Phys. Lett. 104, 062410 (2014).
[7] J. de la Venta, S. Wang, T. Saerbeck, J. G. Ramírez, I. Valmianski, and I. K. Schuller, Coercivity enhancement in bilayers driven by nanoscale phase coexistence, Appl. Phys. Lett. 104, 062410 (2014).
[8] J.-W. Xu, Y. Chen, N. M. Vargas, P. Salev, P. N. Lapa, J. Trastoy, J. Grollier, I. K. Schuller, and A. D. Kent, A quantum material spintronic resonator, Sci. Rep. 11, 15082 (2021).
[9] M. Erekhinsky, J. de la Venta, and I. K. Schuller, Spin valve effect across the metal-insulator transition in , J. Appl. Phys. 114, 143901 (2013).
[10] J. Kim, J. Cramer, K. Lee, D. Han, D. Go, P. Salev, P. N. Lapa, N. M. Vargas, I. K. Schuller, Y. Mokrousov et al., Tuning spin-orbit torques across the phase transition in heterostructure, Adv. Funct. Mater. 32, 2111555 (2022).
[11] el Hage, R., Wang, T. D., Li, J., Basaran, A. C., Torres, F., & Schuller, I. K. (2024). Antiferromagnetic V 2 O 3 based exchange coupling. Physical Review Materials, 8(5), 054407.
[12] Bombardi, A., de Bergevin, F., Di Matteo, S., Paolasini, L., Metcalf, P. A., & Honig, J. M. (2004). Precursor symmetry breaking in Cr doped V2O3. Physica B: Condensed Matter, 345(1-4), 40-44.
[13] F. Lechermann, N. Bernstein, I. I. Mazin, and R. Valentí, Uncovering the Mechanism of the Impurity-Selective Mott Transition in Paramagnetic , Phys. Rev. Lett. 121, 106401 (2018).
[14] Leiner, J. C., Jeschke, H. O., Valentí, R., Zhang, S., Savici, A. T., Lin, J. Y. Y., ... & Broholm, C. L. (2019). Frustrated magnetism in Mott insulating (V 1− x Cr x) 2 O 3. Physical Review X, 9(1), 011035.
[15] Hung, C. H., Shih, P. H., Wu, F. Y., Li, W. H., Wu, S. Y., Chan, T. S., & Sheu, H. S. (2010). Spin-phonon coupling effects in antiferromagnetic Cr2O3 nanoparticles. Journal of Nanoscience and Nanotechnology, 10(7), 4596-4601.
[16] Testa‐Anta, M., Majcherkiewicz, J. N., Xu, K., Goñi, A. R., & Salgueiriño, V. (2023). Room temperature spin‐phonon coupling in Cr2O3 nanocrystals. Advanced Functional Materials, 33(33), 2301973.
[17] . Marezio, M. (1966). Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 20(6), 723-728.
[18] Singh, P., Gupta, A., & Dogra, A. (2016, May). Structural, optical, and magnetic properties of FeVO3. In AIP Conference Proceedings (Vol. 1728, No. 1). AIP Publishing
[19] Kamiyama, S., Sakakura, T., Kimura, H., Sagayama, H., Kishimoto, S., Yamada, I., & Yamamoto, H. (2023). Single Crystal Growth of Ilmenite-Type MnVO3 by Solid-State Recrystallization. Crystal Growth & Design, 23(4), 2295-2300.
[20]Apostolova, I. N., Apostolov, A. T., & Wesselinowa, J. M. (2013). Spin–phonon interaction effects in pure and Fe-doped antiferromagnetic Cr2O3 nanoparticles. Solid state communications, 174, 1-4.
[21]ChandleD. (1987). Introduction to modern statistical. UK, vol. 5: Oxford University Press, Oxford.
[22]王進威. 中子分末繞射簡介及其應用. 物理雙月刊, no.43:2, pp.27-34, 4(2021).
[23] 李志甫. X光吸收光譜實務寶典. 國家同步輻射研究中心,8(2022)
[24] 中子散射儀. 台灣中子科學學會
[25] 王進威、鍾世俊. 澳洲ANSTO中子設施簡介-中子粉末繞射儀. 同步輻射中心, 專文.
[26] Singha, M., Paul, B., & Gupta, R. (2020). Low temperature phonon studies and evidence of structure–spin correlations in MnV2O4. Journal of Applied Physics, 127(14).
[27] Brese, N. E., & O'keeffe, M. (1991). Bond-valence parameters for solids. Structural Science, 47(2), 192-197.
[28] Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Foundations of Crystallography, 32(5), 751-767.
[29] Dwij, V., Sharma, G., Tyagi, S., Krishna De, B., & Sathe, V. G. (2019, July). Phonon anomalies in magnetoelectric Cr2O3. In AIP Conference Proceedings (Vol. 2115, No. 1). AIP Publishing.
[30] Shvets, P., Dikaya, O., Maksimova, K., & Goikhman, A. (2019). A review of Raman spectroscopy of vanadium oxides. Journal of Raman spectroscopy, 50(8), 1226-1244.