| 研究生: |
魏尚宏 Shang-Hong Wei |
|---|---|
| 論文名稱: |
經驗格林函數法模擬1999梅山地震之地震動 Simulation of Strong Ground Motion by Empirical Green Function Method for 1999 Mei-Shan Earthquake |
| 指導教授: | 陳慧慈 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 經驗格林函數 、梅山地震 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由產生一個災害景象地震,可以制定有效的政策並且減少一個地區在地震發生之後對於地震災害的影響。經驗格林函數法可以藉由規模較小的地震動來模擬一個規模較大的地震動,而這種方法也可以有效地產生災害景象地震。 2010年台灣行政院國家科學委員會公布了一項研究結果,指出梅山斷層,在未來十年發生芮氏規模7.1以上的強震機率為9.75%,而在未來五十年發生的機率為44.92%。因此,產生梅山斷層所造成的災害景象地震並探討其對嘉義地區的影響是一件當務之急的課題。本研究以前分析法(forward analysis)模擬1999年梅山斷層所發生芮氏規模6.4的地震動,以了解可能的斷層滑動機制,以及一套模擬的流程,並作為一棟三層樓的鋼筋混凝土建築的地震輸入,進行非線性分析,藉以更進一步的比較觀測與合成波型對於結構物的反應。然後根據上述的震源機制,再更進一步的模擬多組芮氏規模7.1的災害景象地震,以來探討不同滑動機制的災害景象地震的影響。經由比較可以得知,波形、地質條件的選擇對於合成的結果有很大的影響。
An accurate scenario earthquake motions for a target city or region is of primary importance to develop effective countermeasures to reduce the future earthquake damages. The empirical Green’s function method (EGFM) which uses the small earthquakes as Green’s function to synthesize large earthquakes has become a useful approach for such a purpose. On January 21, 2010, The National Science Council of Taiwan announced that the probability for this fault to generate an earthquake of magnitude 7.1 is 9.75% within next 10 years and 44.92% within next 50 years. Thus, the generation of scenario earthquake motions over Chiayi area from Mei-Shan fault becomes a critical task. In this study, we use forward analysis to simulate an earthquake of magnitude 6.4 which is occurred in Mei-Shan fault in 1999. In order to further investigate the conformability of the observed and synthesized waveforms, a hypothetical three-story reinforced building modeled as a three-degree-of-freedom lumped mass system, and follow above earthquake mechanism to predict a few scenario earthquakes of magnitude 7.1. The results show that EGF method can simulate the observed motions at the rock site well. In order to get good agreement, the waveform of green’s function should be as similar as main shock, and the amplitude of observed and synthesized waveform should be same.
〔1〕 Kramer, S.L., Geotechnical earthquake engineering, Prentice Hall, 1996.
〔2〕 Boore, D.M.,“Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra”, Bulletin of the Seismological Society of America, 1983
〔3〕 Hartzell, S.H., “Earthquake aftershocks as green’s function”,
〔4〕 Geophysical Research Letters, 5, 1-4, 1978.
〔5〕 Irikura, K., “Semi-empirical estimation of strong ground motions during large earthquake”, the Disaster Prevention Research Institute., 33, 63-104, 1983
〔6〕 Kanamori, H. and Anderson, D.L., “Theoretical basic of some empirical relations in seismology”, Bulletin of the Seismological Society of America, 65, 1073-1095, 1975.
〔7〕 Irikura, K., “Prediction of strong acceleration motion using empirical Green’s function”, 7th Japan Earthquake Symposium., 151-156, 1986.
〔8〕 Madariaga, R., “High-frequency radiation from crack (stress drop) models of earthquake faulting”, Geophysical Journal of the Royal Astronomical Society, Volume 51, Issue 3, pages 625–651, December 1977
〔9〕 Miyake, H., et al., “Source characterization for broadband ground-motion simulation: kinematic heterogeneous source model and strong motion generation area”, Bulletin of the Seismological Society of America, 93, 2531-2545, 2003.
〔10〕 Irikura, K., et al., “Revision of the empirical green’s function method by Irikura (1986)”, Zisin Journal of the Seismological Society of Japan, 2, B25,1997
〔11〕 Nakamura, H. and Miyatake, T., “An approximate expression of slip velocity time functions for simulation of near-field strong ground motion”, Zisin Journal of the Seismological Society of Japan, 53, 1-9, 2000
〔12〕 地震調査研究推進本部, 震源断層を特定した地震の強震動予測手法, 地震調査研究推進本部,日本, 2009
〔13〕 徐趙東、郭慶迎, Matlab語言在建築工程中的應用,科學出版社,中國,2009
〔14〕 大崎順彦, 新・地震動のスペクトル解析入門,鹿島出版會,日本,1999