| 研究生: |
張博荏 Po-jen Chang |
|---|---|
| 論文名稱: |
污泥及含氯灰渣燒製環保水泥之研究 Production of eco-cement by using sludge and incinerator ash |
| 指導教授: |
王鯤生
Kuen-sheng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 灰渣 、氯鹽 、氯鋁酸鈣 、環保水泥 |
| 外文關鍵詞: | eco-cement, calcium chloroaluminate, chlorides, incinerator ash |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將以焚化灰渣、大理石污泥、下水污泥進行環保水泥之燒製,尤其對高氯含量之灰渣,除預先除氯外,亦考慮在燒製過程嘗試使其形成氯鋁酸鈣固定與熟料中,而成為環保水泥之一部分,以解決氯鹽之干擾。
原料前處理研磨後,利用水泥配料係數計算配比之環保水泥生料,再以實驗室高溫爐燒結處理,燒成兩系列六組不同配比之環保水泥熟料,進行各項物化特性分析以及工程性質與水化反應行為之探討。實驗結果如下:實驗燒製之兩系列六組環保水泥熟料,其游離石灰量皆小於1,且製程燒失量介於25% -30%間,符合實廠窯燒水泥之品管規範。其重金屬溶出濃度均符合法規標準值,後續資源化利用作為土木工程材料深具潛力。研究中所燒製各組環保水泥熟料與波特蘭水泥成份類似,其單礦物組成除了含有C3S、C2S、C3A及C4AF,還有環保水泥特有的C11A7CaCl2等晶相物種。OEC系列環保水
泥漿體部分初終凝時間與OPC比較有略微的提早的現象,但差異並不大且也符合規範;REC系列環保水泥漿體部分初終凝時間明顯的提前許多。環保水泥漿體抗壓部分跟初終凝有正向的關係,在OEC系列環保水泥漿體與OPC強度發展類似,而REC系列環保水泥漿體則有早強的現象發生,這也是含氯環保水泥的特性。由XRD之物種分析得知,環保水泥漿體主要產物為CH、C-S-H膠體,並無明顯差異。此外,環保水泥漿體會產生部分之Mg(OH)2,這是利用大理石污泥取代石灰石的原因。由FTIR分析結果顯示,隨齡期發展均可發現,環保水泥漿體矽酸鈣水化產物C-S-H膠體則具有強的Si-O伸縮振動頻帶;碳酸鹽物種為C-O鍵結;此外,CH為-OH伸縮振動頻帶。由核磁共振(NMR)
技術以29Si為核種進行分析結果顯示,環保水泥漿體之水化產物Q0 峰會隨齡期增加逐漸轉移至Q1與Q2峰,且水化程度與聚矽陰離子皆有隨齡期而增加之趨勢。
The high chlorine content in the incinerator ash has limited the use of it as part of the raw material for producing ecocement. It is possible, however, to
calcine chlorine-containing raw meal into calcium chloroaluminate, one cement hydrate mineral, which can not only fix the chlorine in it but also function just
like the other cement clinker minerals. This study investigated the feasibility of producing ecocement, using chlorine-containing incinerator ash, marble sludge,
and sewage sludge as raw materials, and the hydration characteristics of the resulting cement clinkers.
In the design of the raw materials incorporated the tested wastes, a computational model was established on the basis of cement modulus to formulate possible range of the compositions of raw meals with tested chlorine contents in the raw materials verifying from 1.5-37.8 %(w/w). The calcination of raw materials into cement clinker minerals were examined and the hydration characteristics of the resultant ecocements and the engineering properties of their pastes were studied including the compressive strength, speciation and the degree of hydration, as compared to those of ASTM type I ordinary Portland cement
(OPC).In this study, the amount of free CaO decreased to less than 1 %(w/w) and the LOI for all tested meals met the eco-cement criteria. In conclusion, the formation of major cement clinker minerals such as C3S, C2S, C3A, C4AF and C11A7CaCl2 were confirmed in all the eco clinkers.
Ecocement produced with was washed incinerator ash, marble sludge, and sewage sludge as raw meal (referred to as ordinary ecocement, OEC) showed both the initial and the final setting times were slightly shortened or similar to
those of OPC. However, ecocement produced using chlorine-containing incinerator ash, marble sludge, and sewage sludge as raw meal (referred to as chlorine-containing ecocement, REC) exhibited both the initial and the final
setting times were significantly shortened with the increasing chlorine content in the RECs.
On the other hand, the compressive strength development of OEC samples showed slightly decreased as compared to that of OPC samples, whereas the REC samples showed a reversed trend. The development of compressive strength
outperformed those of OPC samples during the early 28 days, showing the contribution by the hydration of the C11A7CaCl2 which characterizes the rapid setting and strength development of the REC samples.
The results of XRD analysis confirmed that OPC, OEC and REC showed common hydration products of CH and CSH gel, the OEC and REC exhibited the presence of hydration product, (Mg(OH)2), which were supposed contributed by
the use of marble sludge in the raw meals.
The FTIR analysis of the OEC and REC pastes cured at 90 days containes three wavenumbers: the first wavenumber was mainly due to the Si-O bonds of calcium silicate hydrates (CSH); the second wavelength represents the C-O
bonds of the calcium carbonate (CaCO3); and the third wavelength the decomposition of calcium hydroxide (Ca(OH)2). The results indicate the hydration products of the tested OEC and REC samples. The hydration products of both OEC and REC pastes, as analyzed by 29Si
NMR techniques showed that Q0 peak decreased and O1 peake increased with increasing curing age. And the hydration degree and length of the linear polysilicate anions, as estimated on the basis of the Q0 and Q1 peaks, showed the
increasing trend with increasing age.
1. Alba, N., Gasso, E., Vazquez, S. Gasso and Baldasano, J. M.,“Stabilization/solidification of MSW incineration residues from facilitieswith different air pollution control systems. Durability of matrices versuscarbonation”, Waste Management, Volume: 21, pp. 313-323, 2001.
2. Altum, A.I., “Effect of CaF2 ang MgO on sintering of cement clinker”Cement and Concrete Research, Volume: 29, 1999, pp. 1847-1850.
3. Ampadu, K.O., Kazuyuki Torii, “Characterization of ecocement pastes and mortars produced from”, Cement and Concrete Research Volume:31,2001,pp. 431-436
4. Arjunan, P., Michael, R. and Della M. Roy, “Silfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products”,
Cement and concrete research, Volume:29, No. 8, pp.1305-1311, 1999.
5. Barros, A.M.; Espinosa, D.C.R.; Tenório, J.A.S., “Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland
cement” Cement and Concrete Research Volume: 34, Issue: 10, October, 2004, pp. 1795-1801.
6. Barros, A.M.; Tenório, J.A.S.; Espinosa, D.C.R. “Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker” Journal of Hazardous Materials Volume: 112, Issue: 1-2, August 9, 2004, pp. 71-78.
7. Beke, B., “Grinding body size and the hardening of cement” Cement Technology , March/April , 1973 , pp. 47-56.
8. Bhatty, J.I., and Reid, K.J , “Moderate Strength Concrete from Lightweight Sludge Ash Aggregates.”, Cement Composites and Lightewight Concrete ,Volume:11, pp. 179-187,1989.
9. Bhatty, J. I., and K. J. Reid, “Compressive Strength of Municipal Sludge Ash Mortars,” ACI Materials Journal, Vol. 86, pp. 394-400, 1989.
10. Bogue ”The Chemistry of PORTLAND CEMENT” ,2nd edition, Reinhold Publishing Co, pp.245-268,1999.
11. Chang Jun, Cheng Xin, Lu Lingchao, Liu Futian, Zhu Jianping, “Study on the composition and hydration of alinite and calcium chloroaluminate minerals”,Cement and Concrete Research Volume:35,2005, pp. 248-255
12. Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P., “Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”,
Journal of Hazardous Materials, Volume:70, No. 1-2, pp. 53-70, 1999.
13. Mindess, S., and Young, J.F., Concrete, Prentice-Hall, Inc., New Jersey, 1981.
14. Monzo, J. Paya, M.V. Borrachero and A. Corcoles , “Use of Sewage Sludge Ash(SSA)-Cement Admixtures in Motars.”, Cement and Concrete Research , Volume:26 , No.9, pp. 1389-1398,1996.
15. Tay, J. H. and K. Y. Show, “Reuse of wasterwater Sludge in Manufacturing Non-conventional Construction Material- an Innovative Approach to Ultimate Sludge Disposal”, Water Science and Technology, Volume:26,
No.5-6, pp. 1165-1174,1992a.
16. Eighmy, T.T., Eusden, J.D., Krzanowski, J.E. and et al., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipctator ash”,
Environmental Science & Technology, Volume:29, No. 3, pp.629, 1995.
17. Guangren Qian, Yali Cao, Pengcheong Chui, Joohwa Tay, “Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge”,
Journal of Hazardous Materials Volume:B129,2006, pp. 274-281
18. Hamernik, J.D. and Frantz, G.C., “Physical and chemical properties of municipal solid waste fly ash”, ACI Materials Journal, Volume:88, No.3, pp.294, 1991.
19. Hjelmar, Ole, “Disposal strategies for municipal solid waste incineration residues”, Journal of Hazardous Materials 47, pp.347-350, 1996
20. Hui-Sheng Shia, Li-Li Kanb, “Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete”, Journal of Hazardous Materials, Volume:164, 2009, pp. 750-754
21. IAWG(The International Ash Working Group),“Municipal Solid Waste Incinerator Residues”, Elsevier, 1997.
22. Ing-Jia Chiou, Kuen-Sheng Wang, Chen-Chiu Tsai,“Enhancing performance and durability of slag made from incinerator bottom ash and fly ash”, Waste Management Voiume:29,2009, pp. 501-505
23. Jill R. Pan, Chihpin Huang, Jung-Jen Kuo, Sheng-Huan Lin, “Recycling MSWI bottom and fly ash as raw materials for Portland cement”, Waste Management Volume:28,2008, pp. 1113-1118
24. Kakali G. and Parissakis G., “Investigation of the effect on Zn Oxide on the formation of Portland cement clinker” Cement and Concrete Reserch,Volume:25, pp79-85.,1995.
25. Kakali, G.; Tsivilis, S.; Kolovos, K.; Choupa, K.; Perraki, T.; Perraki, M.; Stamatakis, M.; et. al. “Use of secondary mineralizing raw materials in cement production. The case study of a stibnite ore” Materials Letters
Volume: 57, Issue: 20, June, 2003, pp. 3117-3123。
26. Kosson, D.S., Sloot, H.A., and Eighmy, T.T., “An approach for estimation of contaminant release during utilization and disposal of municipal waste
combustion residues”, Journal of Hazardous Materials, Volume:47, No.2-3, pp.43-75, 1996.
27. Krammart, P.; Tangtermsirikul, S. “Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste” Construction and Building Materials Volume: 18,
Issue: 8, October, 2004, pp. 579-583.
28. Kuhl‚ F.M.Lea ”The Chemistry of Cement&Concrete” Edward Arnold Publishers ‚London ‚pp.334-335,1976.
29. Lin, K.L., Chang,C.T. “Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash”, Journal of Hazardous Materials,Volume:135,2006, pp. 296–302
30. Lea, F.M. “The Chemistry of Cement and Concrete” Edward Arnold Ltd., London , 3rd Edition,1970.
31. Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P., “Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Volume:70, No.1-2, pp. 53-70,
1999.
32. Mindess, S., and Young, J.F., Concrete, Prentice-Hall, Inc., New Jersey, 1981.
33. Monzo, J., J. Paya, M. V. Borrachero, and A. Corcoles, “Use of Sewage Ash (SSA)-Cement Admixtures in Mortars,” Cement and Concrete Research, Volume:26, pp. 1389-1398,1996.
34. Moropoulou, Antonia; Bakolas, Asterios; Aggelakopoulou, Eleni “Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis”Thermochimica Acta Volume: 420, Issue: 1-2, October 1,
2004, pp. 135-140.
35. Nabajyoti Saikia, Shigeru Kato, Toshinori Kojima, “Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash”, Waste Management Volume:27,2007, pp. 1178-1189
36. Pluss, A. and Ferrell, J.R., “Characterization of lead and other heavy metal in fly ash from municipal waste incinerators”, Hazardous waste and Hazardous Materials, 8(4), pp. 275-292, 1991.
37. Qing, Ye; Huxing, Chen; Yuqing, Wang; Shangxian, Wang; Zonghan, Lou“Effect of MgO and gypsum content on long-term expansion of low heat Portland slag cement with slight expansion” Cement and Concrete Composites Volume: 26, Issue: 4, May, 2004, pp. 331-337.
38. Richers, U. and Birnbaum, L., “Detailed investigations of filer asher from municipal solid waste incineration”, Waste Management & Research,
Volume:6, pp.227, 1998.
39. Stephan, D., Mallmann,R.,Knofel,D. “High intakes of Cr, Ni and Zn in clinker: Part I. Influence on burning process and formation of phases” Cement and Concrete Research Volume: 29, 1999, pp. 1949-1957.
40. Stoch, A.; Zdaniewicz, M.; Paluszkiewicz, Cz. “The effect of polymethylsiloxanes on hydration of clinker phases” Journal of Molecular Structure Volume: 511, Issue: 1, November 23, 1999, pp. 319-325.
41. Tay, J. H., and K. Y. Show, “Reuse of Wastewater Sludge in Manufacturing Non-Conventional Construction Materials-an Innovative Approach to Ultimate Sludge Disposal,” Water Science and Technology, Volume:26, pp.
1165-1174,1992.
42. Torii, Kazuyuki; Tomotake, Hiroichi; Osafo, Ampadu Kwasi; Echigo, Takuya“Compatibility between ecocement produced from incinerator ash and reactive aggregates in ASR expansion of mortars” Cement and Concrete
Research Volume: 33, Issue: 4, April, 2003, pp. 571-577.
43. Tsakiridis, P.E.; Agatzini-Leonardou, S.; Oustadakis, P. “Red mud addition in the raw meal for the production of Portland cement clinker” Journal of Hazardous Materials Volume: 116, Issue: 1-2, December 10, 2004, pp.
103-110.
44. Tzen-Chin Lee, Wei-Jer Wang, Ping-Yu Shih “Slag–cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit” Construction and Building Materials Volume:22,2008, pp.1914-1921
45. Varas, M.J.; Alvarez de Buergo, M.; Fort, R. “Natural cement as the precursor of Portland cement: Methodology for its identification” Cement and Concrete Research Volume: 35, Issue: 11, November, 2005, pp. 2055-2065.
46. W.H. Duga 著,楊樹人譯,「最新水泥製造學」,中外圖書出版社,1975。
47. Wiles, C.C., “Municipal solid waste combustion ash:
State-of-the-knowledge”, Journal of Hazardous Materials, Volume:47, pp.325-344, 1996.
48. Xiaocun Liu, Yanjun Li, Ning Zhang “Inf luence of MgO on the formation of Ca3SiO5 and 3CaO•3Al2O3•CaSO4 minerals in alite–sulphoaluminate cement” Cement and Concrete Research Volume: 32,2002, pp. 1125-1129.
49. Xingbao Gao, Wei Wang, Tunmin Yea, Feng Wang, Yuxin Lan “Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate”, Journal of Environmental Management Volume:88 ,2008, pp. 293-299
50. Wiles, C.C., “Municipal solid waste combustion ash:
State-of-the-knowledge”, Journal of Hazardous Materials, Volume:47, pp.325-344, 1996.
51. Zanni, H., M. Cheyrezy, and V. Maret, “Investigation of Hydration and Pozzolanic Reaction in Reactive Powder Concrete (RPC) Using 29Si NMR,” Cement and Concrete Research, Vol. 26, pp.93-100,1996.
52. 內政部營建署,http://www.cpami.gov.tw/,2008。
53. 太平洋株式會社,2005。
54. 王年福,「水泥製程於資源再利用之研究」,國立中央大學土木工程學
系碩士在職專班,2003。
55. 王鯤生、孫常榮、林凱隆、張景雲、張毓舜,「都市廢棄物焚化對灰渣粒徑與重金屬分布即溶出特性之探討」,第十三屆廢棄物處理技術研討會論文集,高雄市,pp.463-469,1998。
56. 行政院環保署,http://www.epa.gov.tw/,2008。
57. 沈政儒,「焚化飛灰與下水污泥灰共熔之操作特性與卜作嵐材料特性之
研究」,國立中央大學環境工程研究所碩士論文,2005。
58. 江舜元、許貫中,「以29Si NMR探討強塑劑對水泥水化行為之影響」,土木水利,第十卷,第二期,第341-349頁,1998。
59. 宇智田,“環保水泥(Eco-Cement)生產技術及應用”,88-89 年度水泥工業研討專輯,台灣區水泥工業同業公會,第15-26頁,1999。
60. 尾花博,「新資源再利用體系-環保水泥」,87年廢棄物處理與資源回收國際研討會論文集,台北,1998。
61. 李宗彥,「都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為」,國立中央大學環境工程研究所碩士論文,2001。
62. 李建中、李釗、何啟華與鄭清江,「垃圾焚化灰燼之力學特性與在大地工程之應用」,一般廢棄物灰渣資源化技術與實務研討會論文集,p.193,1996。
63. 余淑惠,「生態水泥特性及鋼筋在生態水泥砂漿中腐蝕行為之研究」,國立海洋大學河海工程學系碩士在職專班論文,2003。
64. 林世強,「以生產環保水泥解決台灣垃圾焚化灰問題」,第十五屆環境規劃與管理研討會,2002。
65. 林世強,「以垃圾焚化灰為原料之環保水泥生產技術與物性探討」,第十七屆廢棄物處理研討會,2002。
66. 林忠逸,「水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究」,國立中央大學環境工程研究所碩士論文,2003。
67. 林東燦,「污泥類廢棄物取代部分水泥原料燒製環保水泥之可行研究」,國立中央大學環境工程研究所碩士論文,2006。
68. 林明鋒,「廢鑄砂及石材污泥取代水泥生料之研究」,國立中央大學環境工程研究所碩士論文,2006。
69. 林家宏,「飛灰調質熔渣成份對卜作嵐反應特性之影響」,碩士論文,國立中央大學環境工程學研究所,2004。
70. 林凱隆,「都市垃圾焚化溶渣粉體調製環保水泥之卜作嵐反應特性研究」,國立中央大學環境工程研究所博士論文,2002。
71. 花蓮縣環保局,「花蓮縣事業廢棄物之貯存、清除、處理之方法及最終處置」,花蓮縣環保局研究報告,花蓮,1997。
72. 邱玟韶,「焚化灰渣取代部分水泥生料燒製環保水泥之可行性研究」,國立雲林科技大學營建工程研究所碩士論文,2003。
73. 范揚凱,「鎂鋁氧化物於水泥砂漿中之氯離子吸附能力」,國立成功大學土木工程研究所碩士論文,2006。
74. 美國混凝土協會材料試驗(ASTM)彙編。
75. 荒川康夫,石膏化學的研究動向,Gypsum and Lime,第167 期,第135-142頁,1980。
76. 陳清齊,「再資源化水泥纖維板之研究」,國立台北科技大學材料及資源工程研究所碩士論文,2002。
77. 曾博榆,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程學研究所,2002。
78. 程月初,「漫談我國水泥工業」,台灣區水泥工業同業公會水泥工業叢書第五輯,1996。
79. 黃兆龍,「高等混凝土技術」,國立台灣工業技術學院工程技術研究所講義,1985。
80. 黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
81. 黃志強,「石材污泥再利用於水泥產業之可行性研究」,國立東華大學自然資源管理研究所碩士論文,1999。
82. 黃榮吾,「土木材料」,三民書局出版,1995。
83. 黃進福,「大理石污泥化學成份分析報告」,花蓮區石材資源化處理股份有限公司研究報告,2004。
84. 黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,國立中央大學環境工程研究所碩士論文,2000。
85. 經濟部工業局,1998。
86. 趙文成、劉卓奇「水泥組成成分與氯離子關係之研究」,國立交通大學土木工程研究所碩士論文,1997。
87. 楊金鐘、吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.43,台北,1996。
88. 鄭文欽,「都市垃圾焚化底灰受鹽類影響重金屬釋出之研究」,淡江水資源及環境工程研究所碩士論文,1995。
89. 環保署事業廢棄物管制中心統計資料,2004。
90. 龔人俠,「水泥化學概論」,台灣水泥工業同業公會,1977。