跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉建良
Jian-Liang Liu
論文名稱: 廣義相對論中以四維度規適配為參考的準局域能量
4D-metric matching for the reference of quasi-local energy in general relativity
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 四維度規適配準局域能量哈密頓量邊界表示式等距嵌入臨界值
外文關鍵詞: 4D-metric matching, quasi-local energy, Hamiltonian, boundary expression, isometric embedding, critical value
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 哈密頓三形式扮演了沿著N向量演化方程的生成子的角色。它決定了哈密頓邊界表示 式,也因而決定了準局域量。能量其意義實為能差,能差的概念總是涉及一個相對的參考值,因此無法唯一定義物理的能量。協變哈密頓法[PRD 72 (2005)
    104020]指定了一個適當的邊界表示式,而近期的工作中[PRD 84 (2011) 084047;GRG 44 (2011) 2401],考慮球對稱時空的情形,我們藉由四維度規在封閉二維面上的適配條件得到令人滿意的結果。本文分析了一般情形的四維度規在封閉二維面的適配條件。我們發現對於一個二維面,滿足等距嵌入到閔氏空間,在度規適配的條件下仍然具有兩個自由度可以決定參考系的選擇。準局域能量的值形成一個集,若 它是這兩個自由函數的泛函,則臨界點為其一階變分的解,而準局域能量則為相應的臨界值。


    The Hamiltonian 3-form plays the role of the generator of the evolution w.r.t. the displacement vector. It is uniquely defined up to a total differential term, the Hamiltonian boundary expression. The latter determines the quasi-local quantities. The meaningful concept of energy involves the difference of the dynamical values w.r.t. the reference values, so that we do not have a unique definition of the physical energies. For the covariant Hamiltonian approach a suitable boundary expression [PRD 72 (2005) 104020] was identified, and in recent works [PRD 84 (2011) 084047; GRG
    44 (2011) 2401] we found satisfactory results obtained from matching the four metrics on a 2-sphere for spherically symmetric spacetimes. Here we analyze the general
    4D-metric matching on a closed 2-surface. We find that for a 2-surface which satisfies isometric embedding into Minkowski space there are still two degrees of freedom remaining to determine the choice of reference. The quasi-local energy values form a set, and, if it is a functional of the two free functions, the critical values could be determined by the solution of its variation.

    1 Introduction 1 2 Covariant Hamiltonian approach 4 2.1 First-order Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Hamiltonian formulation . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 The boundary conditions . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Modification of the boundary expression . . . . . . . . . . . . 10 2.2.4 Remark on the conserved quantities . . . . . . . . . . . . . . . 12 2.3 Application to general relativity . . . . . . . . . . . . . . . . . . . . . 13 3 Brief review of our previous works 17 3.1 The choice of reference . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Quasi-local energy for the strategy (i) . . . . . . . . . . . . . . . . . . 19 3.3 Quasi-local energy for the strategy (ii) . . . . . . . . . . . . . . . . . 21 3.3.1 Program I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 Program II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 Alternative approach . . . . . . . . . . . . . . . . . . . . . . . 25 4 Metric matching on a subspace 27 4.1 Notation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 Dynamical spacetime (M, g) and a 2-surface S . . . . . . . . . 27 4.1.2 Reference space ( R 1,3 , ¯g) . . . . . . . . . . . . . . . . . . . . . 27 4.1.3 Covariant derivative . . . . . . . . . . . . . . . . . . . . . . . 28 4.1.4 Extrinsic curvature of S . . . . . . . . . . . . . . . . . . . . . 31 i4.2 Matching the four spacetime metric on the closed space-like two surface 31 4.3 The existence of the metric matching . . . . . . . . . . . . . . . . . . 35 5 Application to quasi-local energy in general relativity 45 5.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 The holonomic expression in x µ . . . . . . . . . . . . . . . . . 47 5.1.2 The holonomic expression in y a . . . . . . . . . . . . . . . . . 48 5.1.3 The orthonormal frame expression in ϑ α . . . . . . . . . . . . 49 5.1.4 The covector basis expression in ¯ ϑ ¯α . . . . . . . . . . . . . . . 51 5.2 Application to the Kerr like metric . . . . . . . . . . . . . . . . . . . 51 5.2.1 The choice of reference from the variation of the quasi-local energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Alternative choice of the controlled variables . . . . . . . . . . 61 6 Conclusion 66 Bibliography 68

    [1] M. F. Wu, C. M. Chen, J. L. Liu and J. M. Nester, “Quasi-local Energy for Spher-
    ically Symmetric Spacetimes,” Gen. Rel. Grav. 44 (2012) 2401 [arXiv:1206.0506
    [gr-qc]].
    [2] J. L. Liu, C. M. Chen and J. M. Nester, “Quasi-local energy and the choice of
    reference,” Class. Quant. Grav. 28 (2011) 195019 [arXiv:1105.0502 [gr-qc]].
    [3] M. F. Wu, C. M. Chen, J. L. Liu and J. M. Nester, “Optimal Choices of Reference
    for a Quasi-local Energy: Spherically Symmetric Spacetimes,” Phys. Rev. D 84
    (2011) 084047 [arXiv:1109.4738 [gr-qc]].
    [4] C. M. Chen, J. L. Liu, J. M. Nester and M. F. Wu, “Optimal Choices of Reference
    for Quasi-local Energy,” Phys. Lett. A 374 (2010) 3599 [arXiv:0909.2754 [gr-qc]].
    [5] N.
    ´
    O Murchadha, R. S. Tung, N. Xie and E. Malec, “The Brown-York
    mass and the Thorne hoop conjecture,” Phys. Rev. Lett. 104 (2010) 041101
    [arXiv:0912.4001 [gr-qc]].
    [6] L. B. Szabados, “Quasi-Local Energy-Momentum and Angular Momentum in
    GR: A Review Article,” Living Rev. Rel. 12 (2009) 4.
    [7] M. T. Wang, S. T. Yau, “Isometric Embeddings into the Minkowski Space
    and New Quasi-Local Mass,” Commun. Math. Phys. 288, 919 – 942 (2009).
    [arXiv:0805.1370 [math-ph]].
    [8] L. L. So and J. M. Nester, “New positive small vacuum region gravitational
    energy expressions,” Phys. Rev. D 79 (2009) 084028 [arXiv:0901.2400 [gr-qc]].
    68[9] C. M. Chen, J. M. Nester and R. S. Tung, “The Hamiltonian boundary term and
    quasi-local energy flux,” Phys. Rev. D 72 (2005) 104020 [arXiv:gr-qc/0508026].
    [10] J. M. Nester, “General pseudotensors and quasilocal quantities,” Class. Quant.
    Grav. 21, S261 (2004).
    [11] C. C. M. Liu and S. T. Yau, “Positivity of Quasilocal Mass,” Phys. Rev. Lett.
    90 (2003) 231102 [gr-qc/0303019].
    [12] L. B. Szabados, “On the roots of the Poincare structure of asymptotically flat
    space-times,” Class. Quant. Grav. 20 (2003) 2627 [gr-qc/0302033].
    [13] C. M. Chen and J. M. Nester, Grav. Cosmol. 6 (2000) 257 [gr-qc/0001088].
    [14] C. M. Chen and J. M. Nester, “Quasilocal quantities for GR and other gravity
    theories,” Class. Quant. Grav. 16 (1999) 1279 [gr-qc/9809020].
    [15] C. C. Chang, J. M. Nester and C. M. Chen, “Pseudotensors and quasilocal grav-
    itational energy momentum,” Phys. Rev. Lett. 83, 1897 (1999) [gr-qc/9809040].
    [16] C. M. Chen, J. M. Nester and R. S. Tung, “Quasilocal energy momentum for
    gravity theories,” Phys. Lett. A 203 (1995) 5 [gr-qc/9411048].
    [17] L. B. Szabados, “Two-dimensional Sen connections in general relativity,” Class.
    Quant. Grav. 11 (1994) 1833 [gr-qc/9402001].
    [18] L. B. Szabados, “Two-dimensional Sen connections and quasilocal energy mo-
    mentum,” Class. Quant. Grav. 11 (1994) 1847 [gr-qc/9402005].
    [19] J. D. Brown and J. W. York, Jr., Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012].
    [20] J. M. Nester, “Special orthonormal frames and energy localization”, Class.
    Quant. Grav. 8, L19 (1991).
    [21] J. M. Nester, “A covariant Hamiltonian for gravity theories,” Mod. Phys. Lett.
    A 6 (1991) 2655.
    [22] R. Beig and N.
    ´
    O Murchadha, “The Poincar´e Group as the Symmetry Group of
    Canonical General Relativity,” Annals Phys. 174 (1987) 463.
    69[23] K. Kuchaˇr, “Dynamics of tensor fields in hyperspace. III,” J. Math. Phys. (N.Y.)
    17, 801 (1976).
    [24] T. Regge and C. Teitelboim, “Role of Surface Integrals in the Hamiltonian For-
    mulation of General Relativity,” Annals Phys. 88 (1974) 286.
    [25] L. Nirenberg, “The Weyl and Minkowski problems in differential geometry in the
    large,” Comm. Pure Appl. Math. 6, 337-394, (1953).
    [26] Ph. Freud, “Uber Die Ausdrucke Der Gesamtenergie Und Des Gesamtimpulses
    Eines Materiellen Systems in Der Allgemeinen Relativitatstheorie”, Ann. Math.
    40, 417-419, (1939).
    Books
    [27] 梁燦彬, 周彬, “微分幾何入門與廣義相對論”, 社會科學出版社, (2006).
    [28] F. W. Hehl and Yuri N. Obukhov, “Foundations of Classical Electrodynamics,”
    §B.1., (2003).
    [29] S. S. Chern, W. H. Chen, K. S. Lam, “Lectures on Differential Geometry,” World
    Scientific, (1999).
    [30] M. Spivak, “A Comprehensive Introduction to Differential Geometry,” volume
    2, third edition, Ch4, Part D. (1999).
    [31] M. Spivak, “A Comprehensive Introduction to Differential Geometry,” volume
    5, third edition, Ch11, (1999).
    [32] Ray D’Inverno, “Introducing Einstein’s Relativity” Oxford: New York, Toronto,
    (1993).
    [33] 陳省身, “微分幾何講義,” 聯經出版, (1990).
    [34] 伍鴻熙, 沈純理, 虞言林, “黎曼幾何初步,”北京大學出版, (1989).
    [35] Phillip A. Griffiths, Gary R. Jensen, “DIFFERENTIAL SYSTEMS AND ISOMETRIC EMBEDDINGS,” Princeton University Press, (1987).
    70[36] C. Lancos, “The Variational Principles of Mechanics,” Dover (1986).
    [37] R. M. Wald, “General Relativity,” The University of Chicago Press, (1984).
    [38] H. Blaine Lawson, “Lectures on Minimal Submanifolds,” Volume I, (1980), §2.
    [39] A. Papapetrou, “Lectures on general relativity”, (1974), §31–§35, eq. (31.14), eq.
    (35.2).
    [40] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” Freeman, New
    York, (1973), §5.8.

    QR CODE
    :::