跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂曉萱
Hsiao-Hsuan Lu
論文名稱: 低放射性廢棄物最終處置場夯實回填材料之工程特性研究
指導教授: 黃偉慶
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 回填材料KV-1膨潤土MX-80膨潤土修正夯實試驗
外文關鍵詞: KV-1 bentonite, MX-80 bentonite, Modified Proctor compaction test, Backfill material
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 回填材料為多重障壁的主要安全貢獻因子之一,而膨潤土為回填材料之主要原料,本研究以不同種類之膨潤土(KV-1膨潤土、MX-80 膨潤土)以1:1混合矽砂作為主要研究對象,以夯實法製作成低放射性廢棄物處置場使用之回填材料。首先以改良式夯實試驗,取得不同膨潤土混合矽砂之回填材料的最大乾密度以及最佳含水量,然後以其最大乾密度與最佳含水量來製作回填材料試體,進行直接剪力試驗、定體積回脹壓力試驗、水力傳導度試驗,及自由回脹試驗。
      膨潤土與砂混合料修正夯實試驗中,兩種回填材料皆出現典型的   
    夯實曲線,且KV-1膨潤土與砂混合料最大乾密度較MX-80膨潤土與砂混合料大。兩種膨潤土材料的定體積回脹壓力歷時曲線皆有出現些微的雙峰曲線,但與純膨潤土定體積回脹歷時曲線相較其雙峰現象較不明顯。而本研究中兩種膨潤土與砂混合料之水力傳導度皆與純膨潤土相當接近,可見膨潤土與砂混合後仍能維持回填材料所需之低水力傳導度,並可改善回填材料之工作性。直接剪力試驗中,KV-1膨潤土與砂混合料之抗剪強度高於MX-80 膨潤土,主要原因是因其最大乾密度較大所致,KV-1膨潤土與砂混合料之孔隙比較低,膨潤土有效乾密度較高,故試體緊密程度較高,因此其剪力強度較高。


    This Backfill serves as a component of the multiple engineered barriers for isolation of low-level radioactive wastes in a repository. The backfill material is a mixture of bentonite and sand. With a high swelling potential, bentonite is expected to serve the sealing function, while the crushed sand improves the workability of the mixture. This study aims at the investigation on the backfill that is made by using compaction method. KV-1 bentonite and MX-80 bentonite are used in this research. The backfill material was prepared by mixing 50% of bentonite with 50% of silica sand to produce sand-bentonite mixture. Two kinds of bentonite, MX-80 and Kunigel V1 (KV-1) bentonite, were investigated in this study. Modified proctor compaction test was conducted to determine the optimal moisture content and maximum dry unit weight of backfill material. Specimens of backfill material prepared according to the result of modified proctor compaction test were evaluated for swelling pressure, hydraulic conductivity, swelling strain, and direct shear test.
      Modified proctor compaction test results show that the two bentonite-sand mixtures exhibited typical compaction curve. The maximum dry density of KV-1 bentonite-sand mixture is higher than MX-80 bentonite-sand mixture. The swelling curves of the two bentonite-sand mixtures show two-peak curve, but are less significant than that of the 100% bentonite. The swelling pressure of MX-80 bentonite-sand mixture is higher than KV-1 bentonite-sand mixture since the Montmorillonite content of MX-80 bentonite is higher than that of KV-1 bentonite. In this study, the hydraulic conductivity of the KV-1 bentonite-sand mixture and the MX-80 bentonite-sand mixture was found to be quite close to that of pure bentonite. This indicates that the incorporation of silica sand to bentonite does not affect the low hydraulic conductivity feature of bentonite, while improving the workability of bentonite significantly. In the direct shear test, it was found that the shear strength of the KV-1 bentonite-sand mixture is higher than MX-80 bentonite-sand mixture. This is because the effective dry density of KV-1 bentonite in the mixture is higher than that of MX-80 bentonite in the mixture.

    目錄 摘要 I Abstract II 致謝 I 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法與範圍 2 第二章 文獻回顧 4 2.1 低放射性廢棄物最終處置之設計概念 4 2.2放射性廢棄物來源 8 2.3 國內低放射性最終處置場設計概念 9 2.4低放射性最終處置場施工方法 11 2.5日本膨潤土材料施工方法 11 2.6回填材料須具備特性 12 2.7 膨潤土基本特性 13 2.8 擴散雙層理論 15 2.9 膨潤土回脹行為 17 2.10膨潤土夯實 21 2.11 MX-80膨潤土與 KV-1 膨潤土之定體積回脹 22 2.12 100%鈉型膨潤土水力傳導度 25 2.13 MX-80膨潤土與 KV-1 膨潤土之自由回脹 26 第三章 研究計劃 27 3.1 研究內容與架構 27 3.2 試驗材料 27 3.3修正夯實試驗 30 3.4回脹壓力與水力傳導試驗 35 3.5自由回脹試驗 41 3.6直接剪力試驗 42 第四章 結果與分析 44 4.1 試驗材料特性 44 4.2夯實試驗 47 4.3定體積回脹壓力試驗結果 49 4.4水力傳導度試驗結果 53 4.5自由回脹試驗結果 54 4.6 直接剪力試驗結果 57 第五章 結論與建議 61 5.1 結論 61 5.2 建議 62 參考文獻 63

    參考文獻
    台灣電力公司,(2000),「我國用過核燃料長程處置全程工作規劃書(2000年版)」,第3-2頁。
    台灣電力公司,(2010),我國用過核子燃料最終處置初步技術可行
    性評估報告。
    台灣電力公司,(2015),建議候選場址概念設計報告。
    台灣電力公司,(2019),低放射性廢棄物最終處置技術精進計畫膨潤土材料施工方法研究。
    莊文壽、洪錦雄、董家寶,(2000),「深層地質處置技術之研究」,核研季刊,第三十七期,第44-54頁。
    李冠宏,(2015),「最終處置場近場環境對緩衝材料回脹壓力之影
    響」,碩士論文,國立中央大學土木工程研究所碩士論文,中
    壢。
    陳文泉,(2004),「高放射性廢棄物深層地質處置回填材料之回脹行為研究」,國立中央大學土木工程研究所博士論文,中壢。
    趙杏媛、張有瑜,(1990),「黏土礦物與黏土礦物分析」,海洋出版社,北京。
    柯甫松,(1997),「放射性廢料處置場回填材料之工程性質 」,碩士
    論文,國立中央大學土木工程研究所碩士論文,中壢。
    陳韋慈,(2019),「低放射性廢棄物最終處置回填材料於不同配比下
    之工程力學特性,碩士論文,國立中央大學土木工程研究所碩
    士論文,中壢。
    林秀郎,武內邦文,山本修一,伊藤裕紀,谷智之,2007,余裕深
    度処分施設におけるベントナイト層の飽和期間に関する検
    討,土木学会第62回年次学術講演会。
    木ノ村幸士,廻田貴志,城所靖夫,立石洋二,宮原茂禎,武田
    均,2010,大成建設技術センター報第43号。
    中華民國經濟部,低放射性廢棄物最終處置,檢自
    http://www.llwfd.org.tw/jpn.aspx?s=6&id=411

    ASTM D1557 (2015). “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort.” PA, U.S.A.
    ASTM D3080 (2015). “Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions.” PA, U.S.A.
    Bohn, H.L., McNeal, B.L., and O’Connor, G.A. (1985). Soil Chemistry, 2nd ed., John Wiley & Sons Inc., New York.
    Delage, P., Marcial, D., Cui, Y.J., and Ruiz, X. (2006). “Ageing effects
    in the compacted bentonite: a microstructure approach.”
    Géotechnique, 56(4), 291-304.
    Grim, R. E., and Guven N. (1978). Bentonites, Geology, Mineralogy,
    Properties and Uses Elsevier, Amsterdam
    Han, W.S., Xia, M.F., Shen, L.T., and Bai, Y.L. (1997). “Statistical
    formulation and experimental determination of growth rate of
    micrometer cracks under impact loading.” International Journal
    of Solids & Structure, Vol.34, pp.2905-2925.Karnland (2007)
    Haverkamp, B., Biurrun, E., Kučerka, M.(2005). “Update of the Safety Assessment of the Underground Richard Repository.” WM’05 Conference, February 27 - March 3, 2005, Tucson, AZ
    Masakazu, C., Yutaka, S., and Kiyoshi, A. (1999). “A Study on   
      Manufacturing and Construction method of Buffer”, Tokai  
      Works, Japan Nuclear Cycle Development Institute, JNC
      TN8400 99-035. Ibaraki, Japan.
    Komine, H., Yasuhara, K., and Murakami , S. (2009). “Swelling characteristics of bentonites in artificial seawater. ” Can. Geotech. J., 46, 177-189.
    Lloret, A., Villar, M.V., Sanchez, M., Gens, A., Pintado, X., and Alonso, E.E. (2003). “Mechanical behaviour of heavily compacted bentonite under high suction changes.” Géotechnique, 53(1), 27-40.
    Mitchell, J.K. (1993). Fundamentals of Soil Behavior, 2nd Edition, John Wiley & Sons Inc., New York.
    Posiva. (2012). “YJH-2012 Nuclear waste managementat Olkiluoto and Loviisa power plants: review of current status and future plans for 2013-2015.” Posiva Oy, Eurajoki.
    Pusch, R. (1982). “Mineral-water interactions and their influence on the physical behaviour of highly compacted Na bentonite.” Canadian Geotechnical Journal, 19, 381-387.
    Pusch, R., (2001). “Experimental study of the effect of high porewater salinity on the physical properties of a natural smectitic clay.” SKB Technical Report TR-01-07, Stockholm.
    Sivapullaiah, P.V., Sridharan, A., and Stalin, V.K. (1996). “Swelling behaviour of soil-bentonite mixtures.” Canadian Geotechnical Journal, 33, 808-814.
    SKB TR11-01. (2011). “Long-term safety for the final repository for spent nuclear fuel at Forsmark: Main report of the SR-Site project Volume I.” SKB Technical Report TR-11-01, Svensk Kärnbränslehantering AB.
    Yong, R.N., and Benno, P.W. (1975). Soil Properties and Behavior,
    Elsevier, New York.
    The Czech Radioactive Waste Repository. (2020). Richard repository. From https://www.surao.cz/en/public/operational-repositories/richard-repository/
    EnergySolutions.(2020). Barnwell Disposal Facility. From https://www.energysolutions.com/barnwell-disposal-facility/

    QR CODE
    :::