跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李侑瑾
Yu-Chin Lee
論文名稱: 學生-t 過程之破壞性衰變分析
Student-t Processes for Destructive Degradation Analysis
指導教授: 樊采虹
彭健育
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 59
中文關鍵詞: 破壞性衰變試驗高斯過程學生-t 過程厚尾批次效應
外文關鍵詞: destructive degradation test, Gaussian process, Student-t process, heavy-tail, batch effects
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 破壞性衰變試驗在量測過程中,產品需經破壞方能取得與壽命相關之品質特徵值,卻無法再測試,導致每個樣本只有一筆衰變資料,提供非常有限的可靠度資訊。而高斯過程被廣泛地應用於衰變分析,但對厚尾資料之配適未臻理想。本文以包含高斯過程之學生-t 過程為基礎, 建立具有隨機效應之 (加速) 破壞性衰變模型,期能擬合具厚尾特徵的 (加速) 破壞性衰變資料,進而推論 (在正常應力下) 產品之壽命分配與相關性質。同時以多組實際資料說明產品壽命之可靠度估計、信賴區間以及模型之適合度診斷等。


    In a destructive degradation test, one must destroy the products to obtain values of the quality characteristic. As a result, only one meaningful measurement of the quality characteristic can be taken from each test unit. To analyze the degradation data, Gaussian process is a general model although it is not so appropriate to deal with heavy-tailed data. This thesis proposes a Student-t process, which includes Gaussian process as a special case, to assess the possibly heavy-tailed behavior of the degradation data and to draw the corresponding reliability inferences on the lifetime distribution. Random effects are introduced into the model to address the possible unit-to-unit variation. Five data sets are analyzed by the Student-t process and the resulting reliability analyses of products’ lifetime distributions as well as the goodness-of-fit tests are made based on the models selected via Akaike information criterion.

    第一章 緒論 1 1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻探討 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 本文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章 破壞性學生 -t 過程之統計推論 5 2.1 廣義學生 -t 過程之破壞性衰變模型 . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 具批次效應之破壞性衰變模型 . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 產品壽命分配 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 參數估計之最大概似法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第三章 ( 加速 ) 破壞性學生 -t 過程之資料 分析 15 3.1 資料分析流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 濃硫酸容器資料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 黏著劑 B 黏力資料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 黏著劑 K 黏力資料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 聚合物拉力比例資料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 產品密封強度資料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第四章 結論與未來展望 39 附錄 A 40 參考文獻 42

    [1] Burden, R. L., Faires, J. D., and Burden, A. M. (2016). Numerical Analysis, 10th
    ed. Cengage Learning, United Kingdom.
    [2] Cheng, Y. S. and Peng, C. Y. (2012). Integrated Degradation Models in R Using
    iDEMO, Journal of Statistical Software, 49, 1–22.
    [3] Di Nardo, E., Nobile, A. G., Pirozzi, E., and Ricciardi, L. M. (2001). A Computational Approach to First-Passage-Time Problems for Gauss-Markov Processes,
    Advances in Applied Probability, 33, 453–482.
    [4] Ding, Y., Yang, Q., King, C. B., and Hong, Y. (2019). A General Accelerated
    Destructive Degradation Testing Model for Reliability Analysis, IEEE Transactions
    on Reliability, 68, 1272–1282.
    [5] Escobar, L. A., Meeker, W. Q., Kugler, D. L., and Kramer, L. L. (2003). Acceler-
    ated Destructive Degradation Tests: Data, Models, and Analysis, Mathematical and
    Statistical Methods in Reliability, 7, 319–335.
    [6] Gertbsbakh, I. B. and Kordonskiy, K. B. (1969). Models of Failure, Springer-Verlag,
    New York.
    [7] Gradshteyn, I. S. and Ryzhik, I. M. (2014). Table of Integrals, Series, and Products, 8th ed. Academic Press, Waltham.
    [8] Jeng, S. L., Huang, B. Y., and Meeker, W. Q. (2011). Accelerated Destructive
    Degradation Tests Robust to Distribution Misspecification, IEEE Transactions on
    Reliability, 60, 701–711.
    [9] Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust Statistical
    Modeling Using the t Distribution, Journal of the American Statistical Association,
    84, 881–896.
    [10] Li, M. and Doganaksoy, N. (2014). Batch Variability in Accelerated-Degradation
    Testing, Journal of Quality Technology, 46, 171–180.
    [11] Lu, C. J. and Meeker, W. Q. (1993). Using Degradation Measures to Estimate a
    Time-to-Failure Distribution, Technometrics, 35, 161–174.
    [12] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data,
    John Wiley and Sons, New York.
    [13] Nelson, W. (1981). Analysis of Performance-Degradation Data From Accelerated
    Tests, IEEE Transactions on Reliability, 30, 149–155.
    [14] Nelson, W. B. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data
    Analysis, John Wiley and Sons, New York.
    [15] Peng, C. Y. and Tseng, S. T. (2009). Mis-Specification Analysis of Linear Degrada-
    tion Models, IEEE Transactions on Reliability, 58, 444–455.
    [16] Peng, C. Y. (2015). Inverse Gaussian Processes With Random Effects and Explana-
    tory Variables for Degradation Data, Technometrics, 57, 100–111.
    [17] Peng, C. Y. and Cheng, Y. S. (2016). Threshold Degradation in R Using iDEMO,
    Computational Network Analysis with R: Applications in Biology, Medicine and
    Chemistry, 83–103.
    [18] Peng, C. Y. and Cheng, Y. S. (2020). Student-t Processes for Degradation Analysis,
    Technometrics, 62, 223–235.
    [19] ReliaSoft Corporation (2015). Destructive Degradation Analysis in Weibull++, Re-
    trieved from http://www.weibull.com/hotwire/issue178/hottopics178.htm.
    [20] Schrödinger, E. (1915). Zur Theorie der Fall und Steigversuche an Teilchen mit
    Brownscher Bewegung, Physikalische Zeitschrift, 16, 289–295.
    [21] Shi, Y. and Meeker, W. Q. (2012). Bayesian Methods for Accelerated Destructive
    Degradation Test Planning, IEEE Transactions on Reliability, 61, 245–253.
    [22] Tweedie, M. C. K. (1957). Statistical Properties of Inverse Gaussian Distributions.
    I, Annals of Mathematical Statistics, 28, 362–377.
    [23] Tsai, C. C. and Lin, C. T. (2015). Lifetime Inference for Highly Reliable Products Based on Skew-Normal Accelerated Destructive Degradation Test Model, IEEE
    Transactions on Reliability, 64, 1340–1355.
    [24] Xiao, X. and Ye, Z. (2016). Optimal Design for Destructive Degradation Tests With
    Random Initial Degradation Values Using the Wiener Process, IEEE Transactions
    on Reliability, 65, 1327–1342.
    [25] Xie, Y., King, C. B., Hong, Y., and Yang, Q. (2018). Semi-Parametric Models
    for Accelerated Destructive Degradation Test Data Analysis, Technometrics, 60,
    222–234.
    [26] Zhang, Y. and Liao, H. (2015). Analysis of Destructive Degradation Tests for a Prod-
    uct With Random Degradation Initiation Time, IEEE Transactions on Reliability,
    64, 516–527.
    [27] 童昱翔 (2017)

    破壞性加速衰變試驗之適合度檢定 , 國立中央大學統計研究所 , 碩士論


    [28] 藍啟豪 (2018)

    加速破壞性衰變模型之最佳實驗配置 , 國立中央大學統計研究所 , 碩士論文

    QR CODE
    :::